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Abstract 
 

This project addresses the issue of the relatively slow take up of automation within the legal 
domain. Specifically, it attempts to meet some of the challenges facing the creation of 
computable commercial contracts, through the design and implementation of a Controlled 
Natural Language (CNL). CNLs in this domain already exist and have permitted the creation 
of sound computable contracts but have thus far neglected to address the issue of vague and 
ambiguous language. The central aim of the project was the creation of a CNL enabling the 
expression of vague language structures, and the development of a dedicated parser to analyse 
and preserve these structures in an object of the CNL when translating it to another format. 
Methods for quantifying the incidence of vague language in a contract were also developed. 
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1. Introduction 
 

A distinguishing feature of civilized society is its organization around a system of codified 

laws, derived either from consensus or from some higher authority. Most post-industrial nations 

have extended the legal system beyond that of public and criminal law, into the spheres of 

industry and finance. In these contexts, interactions between private individuals and/or 

businesses are governed by contract law. While traditionally such contracts are bespoke 

products of lengthy negotiation and drafting by teams of professional lawyers, technological 

progress over the past several decades has created opportunities for the automation of the 

negotiation and drafting process. This also provides an opportunity for advanced analysis of 

contracts, in turn enabling the automation of contract performance.  

In this chapter, I provide context to the project, a discussion of controlled natural 

languages for law and their limitations, and a summary of the aims and objectives of the project. 

I argue that the lack of support for modelling vague language in law-specific controlled natural 

languages is an obstacle to the popular adoption of computable contracting.  

 

1.1. Context 
 
 
The story of computing in the mid-late 20th century is one that has no natural comparands in 

the history of technology. The immense rate of progress in terms of efficiency and applicability 

is unprecedented. Computer science as a discipline has seen almost as many paradigmatic shifts 

in its young life as have its peers whose intellectual roots reach back to the Hellenic era.  

Arguably, however, what distinguishes computing from other technological revolutions 

is its accessibility, widespread adoption, and permeation into almost every aspect of human 

society. While the advent of technologies like the printing press, the camera, aqueducts, etc., 

prompted significant reorganizations of culture and production, their concentration within 

institutions and among wealthy individuals limited their impact to one largely filtered from the 

top-down. In contrast, beyond the era of early computers, computation has had a far more 

immediate impact both on industry and on daily life. 

 This narrative has continued into the 21st century. The development of new internet 

technologies (such as cloud storage and the blockchain) have made automation accessible and 

affordable to a wider audience than ever before. In the legal sphere, computable contracts have 

been posited as one possible application for these technologies (Surden, 2012). Computable 
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contracts are distinct from traditional contracts in that their construction requires an additional 

layer of computer interpretability. Computable contracts take many forms and have a range of 

functions, ranging from the automation of relevant aspects of the contract to the analysis of its 

semantics.  

Despite this, the adoption of automation within the legal profession has been relatively 

slow, particularly when compared to that of other industries and spheres of public life. A 

primary reason for this is the intricacy of legal language and level of expertise required to wield 

it effectively. In a commercial setting, well-drafted legal contracts are key not only to the 

unproblematic performance of a business agreement, but also to the prevention of potentially 

expensive future litigation. Acquiring the skills to practice law effectively generally 

necessitates several years of study via professional programs that often (though not always) 

lack training in programming languages. The intricacy of legal language is compounded by the 

inherent complexity of natural language itself, the syntactic and semantic quirks of which it 

inevitably inherits. 

As such, a major block to the widespread adoption of computable contracts is the 

confluence of the following factors:  

 

1. Natural language’s supervenience on legal language (entailing within the latter 

all the complexities and inconsistencies of the former), 

2. The norms and conventions of contract drafting/analysis as highly specialised 

knowledge, 

3. The knowledge, language and culture gaps between lawyers and programmers. 

 

The development of controlled natural languages specific to contract drafting may serve to 

resolve these issues by providing a bridge between computing and law. 

 

1.2. Controlled Natural Languages 
 
Controlled natural languages (CNLs) might best be defined in terms of how they differ from 

traditional programming languages. While the latter are purely formal languages - consciously 

designed around a predetermined set of syntactic and semantic rules/systems - CNLs directly 

derive from a natural language. This derivation entails the adoption of some elements of the 

natural language (lexical features, syntax, semantics, etc.), and the exclusion of others. The 

choice of what properties of the natural language will be preserved in the CNL is generally 
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determined by the CNL’s purpose. Upon compilation, CNL and non-CNL languages coincide 

– i.e., a file generated with a CNL may then be analysed for its underlying logic and potentially 

converted to machine language code, just as a Python or Java file may be. 

To illustrate this idea, consider a CNL derived from French for the purpose of 

taxonomizing different species of animal. To be useful to a French-speaking user, the CNL 

must preserve central features of the French language (such as gender and grammatical moods, 

etc.). To meet the domain-specific requirements of the CNL, however, some properties and 

systems will either be omitted or streamlined. In our example, any CNL that models 

taxonomizing must have functionality to allow the user to categorize (“x is-a y”). It must also 

preserve the structure of these categorization statements for analysis purposes (i.e., as 

identifiable components in an abstract syntax tree). As such, while extensive forms of 

conjugation exist in the natural French language, it might be unnecessary to model subjunctive 

and imperative conjugation. Rather, capturing the logics of conditional and indicative forms of 

conjugation would take priority, given the narrow purposes of the CNL. 

 

1.3. Law-specific CNLs, Deontology, and Limitations 
 

Several CNLs have been proposed for the purpose of drafting legal contracts (Prisacariu & 

Schneider, 2012), (Kowalski & Datoo, 2021). Generally, currently existing CNLs are derived 

from English and are primarily concerned with modelling the deontic aspects of real contracts. 

The deontic aspects in question concern the prohibitions, obligations and permissions that are 

central to legal documents. As a subcategory of modal logic, deontic logic also facilitates the 

formalisation of temporal expressions. In the context of legal contracting these relate to periods 

in which various obligations or permissions may hold. Auxiliary components include the 

parties to which a contract pertains, the actions those parties may take to fulfil their contractual 

obligations, events or states of affairs that might come to pass during a contract period, and the 

objects or assets involved in the contract.  

 The most significant challenge facing legal language CNLs has been the problem of 

deontic paradoxes, of which there are many (the details of which are largely outside the scope 

of this project). Various solutions to the problem have been posited, such as:  

 

1. Restricting available syntax as to preclude the formulation of paradoxical statements 

(Pace & Schneider, 2009) 
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2. Allowing for paradoxical statements to be formed but providing some mechanism for 

the detection of inconsistencies, either directly or through reduction to the form of 

contradiction in classical logic (Karadotchev, 2019) 

 

Each approach generates its own challenges, with implications for the verbosity of the CNL 

and its success in emulating natural language, and the complexity of its implementation code. 

These challenges as they relate to this project are expanded upon in chapters 3 and 4. 

 Avoidance of the paradoxes of deontic logic enables the drafting of sound computable 

contracts and goes some way towards incentivising the popular adoption of computable 

contracts in the legal sphere. However, a focus on deontology ignores certain vital features of 

real legal contracts, and as such fails to provide a comprehensive alternative for traditional 

contract drafting.  

In chapter 2 (‘Vagueness, Ambiguity and the Law’), I provide a detailed account of why 

vague and ambiguous language is both a significant problem for legal interpretation, and a 

powerful tool commonly used in contracting. I examine real cases in which the presence of 

vague and ambiguous language in commercial contracts led to litigation. Because legal 

contracts are so heavily concerned with contingencies, conditional states of affairs feature 

significantly in legal language. And while pre-existing CNLs account for contingency (via the 

classical conditional), contracts often combine the traditional language of contingency with 

appeals to ambiguous referents and vague states of affairs. It can and should be argued that 

these appeals are non-trivial to the meaning and interpretative value of legal contracts, and as 

such cannot be dismissed as linguistic embellishments. As such, the absence of vagueness and 

ambiguity in the semantics of pre-existing CNLs leaves a major blind spot unresolved. This 

omission limits the viability of computable contracts as an alternative to traditionally drafted 

ones. 

 
 

1.4. Project Objectives 
 
On the basis of the problems outlined above, the aims of this research project are as follows: 

 

1. A controlled natural language for law, enabling the expression of vague language 

structures. 
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2. Mechanisms to analyse an object written in the CNL, to detect those vague structures, 

and to preserve these structures upon translation of the CNL object into another format. 

3. Mechanisms for quantifying vague language. 

4. An analysis of vagueness in terms of legal scholarship, logic, and linguistics, for the 

purpose of informing the design of the controlled natural language. 

 

In chapter 2, I provide justification for my project objectives through an assessment of legal 

literature on the problem of vagueness. I highlight the reasons behind the frequency of vague 

language in contracts. I conclude that while vague and ambiguous language can act as a source 

of legal contention, its usage is necessary to the proper functioning of contract law.  

In chapter 3, I provide an analysis of vagueness as a concept and as a linguistic category. 

I examine how vagueness manifests in natural language. I provide a taxonomy of vague types 

based on this analysis. I explore the difficulties inherent to modelling vagueness 

programmatically, and why these issues are compounded in a legal context.  

In chapter 4, I outline the methodology used in designing and implementing my 

controlled natural language, informed by the findings of the previous sections. The grammar is 

provided in Backus-Naur Form. The implementation of a lexer/parser for the language is 

outlined, with commentary on technologies used, process, and results. Quantification 

mechanisms are similarly expounded here.  

I conclude by summarizing the project as a whole and outlining how each of the 

objectives (1) – (4) were met. 
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2. Vagueness, Ambiguity, and the Law 
 
This chapter provides an overview of vagueness and ambiguity through the lens of legal theory. 

The purpose of this section is to deliver evidence for the premise put forward in the previous 

section – that is, that vague language is central to contract law, and as such should insofar as is 

possible be modelled in relevant CNLs. Legal literature on the problem of vagueness is 

examined here, and a discussion is provided as to the positive role of unspecific language in 

contract drafting and interpretation. 

 
2.1. Definitions and Preliminaries 

 

Before the role of unspecific language in contract law can be explored, it is pertinent to provide 

some preliminary definitions. It should be noted that the terms vagueness and ambiguity are 

unpacked in detail in chapter 3, with discussion of their formal and conceptual properties, of 

their differentiation from one another, and of their specific roles in language. As such, the 

definitions provided here are intentionally limited for the purpose of establishing their 

relevance in the legal context.  Unspecific language can be taken as an umbrella term 

encompassing a range of linguistic features. Here, we are focused on two such features: 

vagueness and ambiguity. While often used interchangeably, the two refer to different linguistic 

phenomena. 

 Vagueness can be defined as language that is so imprecise regarding its referents or 

truth claims as to generate potential borderline cases. Vague propositions are vague due to the 

lack of possible avenues of inquiry that would verify their truth value (Hu, 2017). Vague 

statements are often ones that concern description or categorization. There is often some degree 

of subjectivity attached to a vague statement. 

 Borderline cases are the products of statements that have multiple valid interpretations 

as to what they refer, many of which may conflict with one another. A borderline case is the 

result of a sentence that makes a claim about some feature or phenomenon (be it literal or 

conceptual), using language that obscures the object or truth conditions of that sentence. That 

is, if an interlocuter makes a statement about the world that could be reasonably interpreted as 

having multiple potential meanings, or reasonably be evaluated as true or false in equal 

measures, they have made a vague statement that generates borderline cases. In common-sense 

terms, borderline cases are the result of ‘failing to draw the line’. An example might be “He’s 
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a handsome man”. One could reasonably judge this true or false, and it is unclear as to how 

handsomeness can be objectively measured to settle disagreement.  

 Ambiguity describes statements whose constituent parts contain words that might have 

multiple meanings. While this also generates potential borderline cases, ambiguous statements 

differ from vague statements in that upon disambiguation, the referents of the former can 

become fixed. This is not the case in vague statements, who maintain controversy as to their 

referents, meanings, or truth-values even after disambiguation is applied. Ambiguity may also 

be the result of misused punctuation and may be resolved through altering sentence structure. 

 Some examples of vague statements include “Rembrandt was short for a Dutchman”, 

“Personhood begins in the womb”, “The garden is overgrown”. The properties and categories 

invoked do not have sharp, objective boundaries, making truth conditional verification difficult 

and/or impossible. Ambiguous statements include “Alice walked her dog by the bank” (i.e., 

river or financial bank?), “Connor waved, and the flag did too” (i.e., social act or kinetic 

event?), “Let’s eat Grandma” (i.e., cannibalism or family dinner?). For further discussion and 

illustrations, see the next chapter. 

 
 

2.2. Law and the Sorites Paradox 
 

The impact of vague language can be felt across most sectors of the legal world. While our 

focus is on commercial contracts, it is not difficult to see how imprecision might prove 

problematic elsewhere. In the criminal justice system, for instance, the consequences of 

confusion over the definition of a crime could be catastrophic for all parties involved. 

Confidentiality and termination clauses must also be highly specific as to avoid the potential 

for future litigation. Similarly, the courts that have jurisdiction over a contract may not be left 

undefined. The potential for borderline cases seems, superficially at least, to be something we 

should strive to avoid, lest we run into controversy over interpretation.  

 

2.2.1. The Sorites Paradox 
 

Precision and clarity are desirable traits in normal legal practice. Furthermore, the avoidance 

of vague language is often treated as a virtue. The problem of vagueness has generated 

significant discussion in legal literature (Páll Jónsson, 2009). Much of this discussion reduces 

to what is termed the Sorites Paradox. Sorites concerns the problem of borderline cases. Simply 
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put, the paradox states that it is possible to extend a basic categorization statement indefinitely 

as to reach a final inference that, while inductively sound, defies common-sense or invites 

controversy. We can illustrate this with modus ponens: 

 

 

1. Base step: A man with no hair is bald. 

2. Induction step: A man with n+1 hairs is no more or less bald than a man with n hairs 

(where n is zero hairs and n+1 is 1 hair, and so on). 

3. Inference: Therefore, a man with 500,000 hairs is bald. 

 

Formally, where Φ is a predicate ‘baldness’, n is a natural number, and 𝛼# is a value in a series 

for Φ: 

 

(Induction Sorites) 

 

Φ𝛼$ 

∀𝑛(Φ𝛼# → 	Φ𝛼#*+)
∀𝑛(Φ𝛼#)

 

 

 

This can also be formalized in terms of the conditionals it entails: 

 

(Conditional Sorites) 

 

Φ𝛼$	 

Φ𝛼+ → 	Φ𝛼- 

Φ𝛼- → 	Φ𝛼. 

…	 
Φ𝛼#0+ → 	Φ𝛼#

Φ𝛼#
 

 

where n can be arbitrarily large. 

The final inference seems plainly false, defying the common-sense definition of 

baldness. Naturally, we might attempt to resolve this by rejecting the induction step. The 
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problem with this is that in negating the induction step, we affirm its contrapositive – that is, 

we find ourselves accepting that a man with a single hair on his head cannot be described as 

bald. Not only is this controversial, but it forces us into drawing a sharp distinction between 

bald and non-bald referents. Because the induction step is a generalization that does not permit 

exceptions (Boolos, 1991), in rejecting the induction step, we imply the existence of a threshold 

n number of hairs that must be reached for baldness to cease to hold as a property. Further, we 

must accept that any proposition invoking the concept of baldness can be checked against this 

threshold to verify its truth value. Such a specific threshold cannot be defined without some 

degree of controversy or arbitrariness, resulting in the Sorites puzzle. Attempts to refine the 

Soritical predicate through introduction of new predicates (e.g., ‘baldish’) fall foul of the same 

issues, and lend themselves to the problem of higher-order vagueness and infinite regression. 

 

2.2.2. Legal Scholarship on Sorites 
 

It is possible to define vagueness itself in terms of the paradox, describing it as “[…] an 

indeterminacy in the applications of an idea, as to how many grains are required to make a 

heap, and the like.” (Peirce, 1892). Sorites has acted as the starting point for many accounts of 

vagueness (both in conceptual-logical terms and in terms of how it manifests in natural 

language). These accounts are explored in chapter 3. However, here our focus must stay on 

legal theory, where the paradox has taken central stage in discussions on vagueness. The so-

called ‘Bad Samaritan Law’ thought experiment can be used to illustrate the application of 

Sorites to legislation (Hunt, 2016).  

Imagine some law is passed that automatically charges with manslaughter any 

individual observed not intervening to save the life of another person(s) who is clearly in peril. 

All individuals must provide “reasonable assistance” to the potential victim. If the individual 

in question was not able to come to the aid of the victim without putting themselves in peril, 

then demanding they assist is unreasonable. Now, consider that a child has drowned in a lake. 

A woman was observed walking some ways into the lake to save the child but turned around 

before reaching them. She is charged under the Bad Samaritan Law. In her own defence, the 

woman argues that while walking some steps into the lake was reasonable assistance, going as 

far into the lake as the child was when drowning should be considered unreasonable. She argues 

that if one step into the lake is not unreasonable, then two steps are not – the difference between 

one and two is morally trivial. Continuing this line of argument indefinitely implies moral 

triviality between ten and eleven steps, etc. But, the woman argues, this incremental triviality 
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can be chained to imply that taking five hundred steps into the lake to save the child’s life is an 

entirely reasonable request. She argues that this is absurd. The prosecutor might argue that all 

she has proven is that this line of thought leads to absurdity, it does not prove that she is not 

liable. However, the judge is not so sure, and advises the jury that it cannot be proven at what 

point the woman’s duty shifted from reasonable to unreasonable. 

In Hunt’s example, the Soritical predicate is “reasonable assistance”. But the predicate 

could theoretically be anything, and as such could apply equally in other spheres of the legal 

world – most importantly for our purposes, to contract law. One response to the Sorites problem 

is Feinberg’s argument for ‘borderline zones’ (Feinberg, 1984). Feinberg argues that the kind 

of borderline cases generated by Soritical predicates should be split into zones. These zones 

are demarcated based on some consensus as to the degree to which the predicate applies. Zones 

where the predicate certainly does or does not apply bookend middle zone(s), encompassing 

all cases in which consensus cannot be reached. As to the question of legal responsibility, 

Feinberg argues that cases falling in borderline zones should not be held liable. Here then, the 

burden is on the prosecutor or suing party to prove that the prosecuted party is clearly liable. 

Note that this solution comes down to the question of consensus, spotlighting the central 

problem of Sorites to the legal world: one of interpretation. Dworkin’s proposed solution to 

vagueness similarly comes down to the norms of interpretation (Dworkin, 1986). Dworkin 

argues that vague predicates (such as “cruel” or “fair”) that often feature in legal controversies 

are ‘semantic defects’ – i.e., the product of miscommunication among speakers as to the correct 

interpretation of these predicates. Moore similarly dismisses the problem of vagueness as the 

product of the limits of human language to accurately describe real-world objects and 

phenomena (Moore, 1992).  

Clearly then, the problem of vagueness and the paradoxes it entails are central issues in 

legal theory. It should be noted however that much of the literature we have touched upon raise 

questions that are far beyond the scope of this project and will not be explored here. Feinberg, 

Dworkin, and Moore’s proposals have generated extensive discussion in legal theory around 

the applicability of classical logic to law (due to the central role of bivalence in Sorites), 

epistemicism, and other topics in ethics and philosophy that do not pertain to the aims of our 

project. The purpose of this section is to illustrate that vague language is a non-trivial feature 

of legal language, and to identify aspects of legal literature that relate to the design of our 

controlled natural language. As such, we limit our exploration of the topic with this in mind. 
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2.3. Necessary and Desirable Vagueness 
 
 
Returning to our project, we might conclude that vagueness is completely undesirable for a 

contracting CNL. We might assume then that in designing a CNL for use by legal professionals, 

we should aim to eliminate the possibility of vague language use, insofar as that is possible. 

However, this would be undesirable. Vague language plays an important role in the correct 

functioning of contract law.  

 Consider Force majeure, a common clause in commercial contracts. Force majeure 

clauses allow lawyers to include contingency plans for unforeseen circumstances, such as 

natural disasters. This is particularly important for the avoidance of further litigation in 

business agreements that rely heavily on smooth logistical operation. It is in the interests of all 

parties that a disruption in the chain of supply or production does not lead to the contract 

becoming void, with terms vague enough to encompass a variety of possible contingencies. 

Similarly, dispute resolution or arbitration clauses are often included in commercial contracts. 

These may be unspecific as to the triggers for arbitration, its length, or opt-out conditions.  

 Academic literature on vagueness is not limited to negative readings of the subject. 

Many legal approaches to vagueness highlight its productive capacities. Endicott, for instance, 

argues that legal controversies generated by cases like the one outlined in the Bad Samaritan 

thought experiment can be read as opportunities for clarification (Endicott, 2011). To Endicott, 

vague language prompt courts to specify the details of a law. He also argues that the existence 

of vague laws can incentivise lawyers to draft highly specific contracts, to avoid risk. Similarly, 

Soames sees controversy over vague language as a conflict over interpretation that may prompt 

the drafting of new laws or contracts (Soames, 2011). Soames argues that this serves to perfect 

the legal system through the process of ‘precisification’.  

 In contrast to Endicott and Soames, who stress the beneficial aspects of vagueness in 

legislation and interpretation, Bernheim and Whinston focus on the utility of vagueness to 

contract law (Bernheim & Whinston, 1998). On this position, when some contingencies, 

objects or other features of a contract are unverifiable, some deontic aspects of that contract 

may be left vague to the benefit of all parties. The presence of any form of vagueness renders 

the contract incomplete. However, in a departure from the traditional perspective, 

incompleteness is presented as being an equally sound property as completeness. The argument 

is that when optimal completeness cannot be achieved, an intentional form of incompleteness 

should be pursued. This position stresses the formal aspects of contracts. Framed in game 
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theoretical terms, well-designed contracts are posited to be those that respond to the 

unverifiable or vague aspects of a contract by intentionally obfuscating the conditions of 

verification for other aspects, even when the latter are in fact measurable or open to 

clarification. This is posited as a desirable remedy if the unverifiable aspects initially tilt the 

balance of interpretation in favour of one party or another. This reading of vagueness is 

motivated by the premise that vagueness often cannot be avoided, either in terms of language 

or in terms of contingencies, and that therefore some mechanism towards securing fair 

interpretation is of paramount importance.  

 Vagueness then is not so two-dimensional as to be an entirely negative aspect of 

language. Nor is there a clear way in which it can be avoided completely – both as a feature of 

legal language and as a reflection of the complexities and contingencies of the material realities 

contracts pertain to. At worst, the attitude of legal scholars to vagueness might be summarised 

as one of grudging acceptance. At best, we see a tentative optimism as to its role in the 

perfection of norms and interpretation. 

 

2.4. Ambiguity and Reference 
 
The focus thus far has been on vague language and its implications for contract law. While 

ambiguity is a fundamental feature of legal language, it is side-lined in our survey of the 

literature. This is because its specific properties – those that differentiate it from vagueness - 

have no unique role to play in law. By this, we mean that the problems of reference and 

verification that ambiguity generates for legal language reduce to the same problems in the 

context of natural language. And, crucially and in contrast to vague propositions, fuzzy 

referents and borderline cases generated by ambiguous propositions can be solved universally 

through the application of disambiguation. This is not available in the resolution of vagueness 

(see chapter 3 for more on this). The role of vagueness in law is an extension of its role in 

natural language in general, but one that generates problems specific to that domain (which, in 

turn, generate particular norms of interpretation and contracting). 

 This is not to say that ambiguity cannot be highly problematic in a legal context. Plainly, 

the correct fulfilment of an obligation becomes impossible if the parties involved have no 

consensus as to what that obligation entails. An example might be the obligation for a 

distributor to deliver toothpicks to a restaurant. The restaurant is expecting wooden table 

toothpicks typical to the culinary context. But the distributor might deliver plastic toothpicks 
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of the kind sold in a chemist. The distributor might claim when challenged that the restaurant 

was not specific enough when placing their order and that technically the contract was fulfilled. 

Potentially expensive litigation might be triggered in such an example.  

Much like vagueness, ambiguity also plays a necessary role in the drafting of legal 

contracts. Natural language could not function without the use of non-rigid designators 

(Kripke, 1981). As an extension of natural language, legal language is no different. To 

accurately reflect real world states-of-affairs, lawyers must be allowed to utilise unfixed 

referents in deontic statements. A simple example of this might be a clause that obligates one 

party to pay the other interest on a loaned asset for a set period, where the rate of interest paid 

is pinned to UK mortgage rates year-by-year. Because these rates are varying, “interest” as a 

term in such a contract is a non-rigid designator. While technically ambiguous, this is 

unproblematic here. 

While closely related to vagueness, ambiguity is a distinct linguistic phenomenon and 

must be treated as such. Modelling ambiguity in a CNL also poses unique challenges, as will 

be explored in the next two chapters. 

 

2.5. Application to Commercial Contracts 
 

Much of the discussion on imprecise language in law outlined in previous subsections has 

centred on legislation and lawfulness, although we have introduced work that specifically 

relates to commercial law. Because our project is directly concerned with the business sector 

and contracts pertaining to it, it is useful to point to examples of where vague and ambiguous 

language has been cited as significant to commercial contract litigation. Our findings here 

directly informed the design of our CNL grammar (see subsection 4.1.5). 

 In the case RTS v Müller (RTS Flexible Systems Ltd V Molkerei Alois Müller Gmbh & 

Co KG, 2010), a dispute arose between the parties listed over the timeliness of services 

provided by the former to the latter. Briefly, RTS brought a claim against Müller for unpaid 

fees. Müller countered by arguing that RTS had not yet fulfilled their contractual obligations, 

and therefore had no right to request payment. The parties had initially agreed to enter into a 

detailed contract outlining the terms upon which the work was to be carried out. However, the 

exact terms of the contract were not finalized before work began. As such, an interim contract 

was entered into, with loosely agreed-upon terms and conditions. The contract outlined 

obligations for payment and delivery, but wrapped them in vague language regarding 

timeframe for fulfilment (‘[…] within 30 to 90 days of takeover […]’, ’[...] payment of 30% 
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after delivery’). Contention therefore arose due to ambiguity over what complete delivery 

consisted of, and disagreement over the timeframes within which delivery and payment should 

coincide with one another. The case went to court and was appealed twice. Presiding judges in 

the initial case and in its appeal ruled differently from one another. The third and final judge 

identified the source of disagreement between the judges as a result of ‘[both parties] 

submitting that at some stage a contract came into existence which governed their relationship’, 

and, given the vagueness of the language used, both parties being reasonably able to argue in 

favour different interpretations of that contract. While this case no doubt adds credence to the 

notion that vague language can enable miscommunication and lead to expensive and lengthy 

litigation, it also illustrates why vague language is useful and necessary in commercial law. As 

the final presiding judge puts it ‘[the case] demonstrates the perils of beginning work without 

agreeing the precise basis upon which it is to be done.’ The counter to this argument is that it 

is assumes an ideal context in which real world constraints do not exist. As it stands, the parties 

initially intended to enter into a complete contract but were forced by time constraints to enter 

into an incomplete one – the use of vague language enabled them to do so. While in this case, 

incompleteness led to litigation, this should not be universalized. As such, vague language has 

a place and purpose in commercial contracts. 

 The case Chartbrook v Persimmon (Chartbrook Ltd v Persimmon Homes Ltd and 

Others, 2009) further illustrates the problem of imprecise language. In this case, a dispute arose 

between the parties over semantics. A clause in the contested contract stipulated that 

Persimmon’s fee for using Chartbrook’s land to construct properties would increase ‘if the 

properties sold for more than expected’. Chartbrook requested an increase in payment on the 

basis that the contingency to which they agreed had been realized. Persimmon refused on the 

basis that the language used to define the contingency and its connotations was too loosely 

defined. The presiding judge in this case remarked that ‘[…] the meaning of words varies 

according to the circumstances with respect to which they are used. […] the contract does not 

use algebraic symbols. It uses labels […] they are usually chosen as a distillation of the meaning 

or purpose of a concept intended to be more precisely stated in the definition […] [the 

definition] may help elucidate ambiguities.’ The appeal to definition in the resolution of 

contested contingency measures illustrates where ambiguity and vagueness differ (as 

expressions of the latter kind cannot be disambiguated), but also where they may pose a 

common problem in commercial contract interpretation. 

  

 



 19 

2.6. Conclusions for Project 
 
We now have a sense as to how unspecific language is treated in legal theory and scholarship. 

It is often a source of frustration for the creation and upholding of interpretative norms. Further, 

attempts to avoid it or to resolve the paradoxes it leads to have been unsuccessful (for reasons 

largely beyond the scope of this paper). Nevertheless, there is also significant literature that 

frames it in a far more favourable light.  

Ultimately then, we might summarise vagueness and ambiguity as ‘necessary evils’ in 

this context. We must now measure the relevance of this to our aim: the design and 

implementation of a controlled natural language for the legal domain. Vagueness as it manifests 

in natural language generates borderline cases – this seems inevitable. Use of the Soritical 

predicate is a simple way of formalizing this problem. However, as we have seen, the formal 

properties of natural language that substantiate vagueness and ambiguity are wide-ranging and 

cannot be reduced to a single linguistic mechanism. Similarly, the impact of imprecision in a 

deontic context – the context of contract law – is felt differently depending on its use case (e.g., 

force majeure vs. an ambiguous referent). The conclusion we can draw from this is that while 

our CNL could be designed around a singular predicate for vagueness, this would obscure the 

specific roles its different forms play in the structure of a contract. As such, our CNL should be 

informed by an analysis of vagueness and ambiguity as features of language, and a taxonomy 

based on this analysis. 

We should not negate the problematic aspects of vague language in the process of 

accounting for it. Precision and conciseness are desirable in most domains, and particularly so 

in the legal context where so much (material or otherwise) may be at stake for the parties 

involved. Given the scope of the project, a reasonable remedy is to provide a mechanism for 

quantifying the degree of vagueness present in a contract drafted in our CNL. This should 

provide information on types of vagueness and their frequencies. Enforcing limitations on 

vague language is not desirable in this context. The range of attitudes encountered in this 

section suggests that, although we have a definition of vagueness and the problems it generates, 

its role in the legal context is contested and to some degree subjective. The end-user should be 

free to edit or preserve their contract based on information provided by the quantification 

mechanism. 
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3. Analysis, Taxonomy, and Models of Vagueness 
 

Having established the relevance of unspecific language to law, we must now consider how 

best to model it in a legal CNL. While the previous chapter provided a general overview of 

vagueness and ambiguity, a more comprehensive analysis is necessary. This analysis is two-

fold.  

First, we consider how vagueness and ambiguity manifest as properties of natural 

language. Various methodologies have been proposed for demarcating these properties into 

distinct categories. We draw from these to formulate a working taxonomy of vague and 

ambiguous types.  

Second, we consider relevant literature on vague propositions and their formal 

character. This will inform the design of the grammar underpinning our CNL. This analysis 

leads into a discussion of the theoretical challenges that arise in the application of antecedent 

theories of vagueness to the context of legal language. I argue that the outcomes of pre-existing 

analyses of vague propositions cannot be unproblematically applied to the unique requirements 

of legal CNLs. Many prominent accounts of vagueness as a linguistic feature focus on 

philosophical questions around a speaker’s agency and belief. In the context of legal language, 

such questions are largely secondary. I consider the implications of this to the design of our 

CNL. 

 

3.1. Analysis 
 
In their wide-ranging survey of vagueness as a special topic in formal semantics, Kamp and 

Sassoon introduce the question as “[…] an ultimate challenge. An enormous diversity of 

literature on the topic has accumulated over the years, with no hint of a consensus emerging” 

(Kamp & Sassoon, 2016). This lack of consensus is reflected in the multitude of vague 

taxonomies that have previously been proposed. The lesson from this is that we should embrace 

the fact that, while vagueness is an observable phenomenon in natural language, its 

interpretation, measurement, and typification is to some degree subjective. 

 There is some agreement on the generic indicators of vague expressions. An exploration 

of these indicators will help us formulate our working taxonomy. Flags for vague expressions 

include: 
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1. Susceptibility to the Sorites Paradox     (Section 3.1.1) 

2. Dependence on a comparison class for meaning   (Section 3.1.2) 

3. Subjectivity in truth value assessment    (Section 3.1.3) 

4. Sensitivity to context in truth value judgement   (Section 3.1.3) 

5. Presence of tolerance-governed predicates    (Section 3.1.4) 

6. The generation of borderline cases and fuzzy boundaries  (Section 3.1.4) 

7. Modifiers that select for certain types of vague predicates  (Section 3.1.5) 

8. Behaviour under ellipsis; resistance to disambiguation  (Section 3.1.6) 

 

Note that in natural language, the terms and structures that entail these indicators are often 

interrelated and co-dependent. Our aim in this subsection is a finely grained grammatical 

analysis of vagueness, but one that remains relevant to the design of our controlled natural 

language. Because we explored the Sorites Paradox in depth in the previous section we will 

only mention it briefly here. Some indicators of vagueness are evident on the atomic and 

propositional levels, while others only manifest in context of larger inference structures. The 

purpose of this subsection is to expound these indicators and their relationships with one 

another, and from this to move towards a taxonomy of the categories that draw them together. 

  

3.1.1. Soritical Predicates 

 

While we are dispensing with further discussion of the Sorites Paradox, the idea of a Soritical 

predicate as the primary mechanism behind vagueness is largely mirrored in the broader 

literature on the topic. Put simply, discourse on vague language often centres on the vagueness 

of predicates. Predicates are often measured in terms of their application domain. A positive 

extension of a predicate is the domain to which that predicate certainly applies, while the 

negative extension is the inverse of this. Vagueness persists in the truth value gap, i.e., the set 

of all borderline cases the predicate may apply to (Zadeh, 1965).  

 

3.1.2.  Comparison Class Dependency 

 

It is in this context that the notion of comparison class dependency appears (Klein, 1980). A 

statement that utilizes adjectives is one that relies on a comparison class for meaning. A 

particular object will instantiate several conceptual and material properties. But where the 
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central meaning of a proposition is one that relies upon knowledge/reference to a particular 

property or cluster of properties, that proposition relies upon a comparison class to secure the 

referential validity of the proposition (Frege, 1948) (Russell, 1905). A comparison class is the 

set of entities determined to definitely instantiate a property, used as a criterion for judging the 

truth value of a proposition that assigns that property to an object.  

Note that comparison class dependency forms the basis for other indicators of 

vagueness that involve the use of adjectives. Two such indicators are the possibility of 

subjectivity as to the exact membership of an invoked comparison class, and sensitivity to 

context in the assessment of descriptive and categorizing propositions (subsection 3.1.3). 

Tolerance-governed predicates (subsection 3.1.4) describe a subset of adjectival predicates and 

so also indicate comparison class dependency. As such, comparison class dependency will be 

referenced in discussions of those indicators. 

Adjectives are the most common form of predicate that reference a comparison class, 

but not all adjectives are vague. For instance, so-called sharp adjectives such as ‘prime’ or 

‘even’ to describe quantity or numeric value do not generate borderline cases, and so do not 

function as vague predicates. This contrasts with the vast majority of adjectives – relative 

adjectives – which do. Examples of relative adjectives include ‘big’, ‘smart’, ‘tall’, ‘bald’, etc.  

 

3.1.3. Subjectivity and Sensitivity in Truth Value Determination 

 

This also introduces two further indicators of vagueness: that of subjectivity in truth value 

assessment, and of sensitivity to context in truth value judgement (Graff, 2000) (Kennedy, 

2007) (Barker, 2002) (Crespo & Veltman, 2019). Propositions of the former entail comparison 

class-determining for-phrases (Cruse, 2010)  (Gehrke & Castroviejo, 2015), while propositions 

of the latter feature judgement-determining phrases (Rips & Turnbull, 1980). 

An example of subjective indication is the statement “this meal is small for its price”. 

The speaker is invoking an adjective ‘small’, inviting the listener to judge the validity of their 

statement through comparison to various potential classes – e.g., the set of all meals, the set of 

all small meals, the set of all expensive meals, relative portion sizes, etc. Subjectivity here is 

further compounded by the object itself. A meal can be comprised of various food and drink 

types, each of which with different comparison classes for judgment of smallness, 

expensiveness, etc. A meal made entirely of caviar, for instance, would have a significantly 

different set of criteria for unreasonable size-to-expense ratios to be judged against than a meal 
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of rice and peas. There may also be a degree of fuzziness as to the boundaries of the food types 

themselves – e.g., the point at which pasta al dente becomes standard pasta, which may provide 

further context for truth value assessment based on some comparison class or another. This 

implements the concept of nested comparison class statements, with the potential of 

transforming the overall subjectivity (and so possible indicators of vagueness) of the larger 

proposition.   

An example of a judgement-determining phrase might be the statement “In my opinion, 

this street is clean”. The comparison class is implied, but the difference is that it is framed in 

terms of the speaker’s judgement. This judgment adds additional context to truth value 

assessment (e.g., the speaker’s beliefs, expectations, known variations in context that might 

weigh for or against the truth value of the proposition, etc.) for the listener to reason with. The 

proposition may variably be judged as true or false dependent on context. Regardless of 

sentential differences, however, the matter of comparison class dependency persists. And, 

along with it, persists the problem of borderline cases. For even when the comparison class and 

context of a predicate is fixed, there may be indeterminacy as to the correct tripartition of its 

extensions. 

 

3.1.4. Tolerance-governed Predicates; Borderline Cases and Fuzzy Boundaries 

 

Vague expressions rarely exist in isolation. The ability to make inferences is at the centre of 

natural language. It is here that the notion of tolerance comes into view. As an indicator of 

vagueness, tolerance is the notion that small differences have no consequences for membership 

(Dummett, 1995) (Wright, 2021). Adjectival predicates have varying tolerance ranges. For 

instance, ‘tall’, as a Soritical predicate, is a relative adjective and so resists the imposition of 

rigid definition. In contrast ‘prime’ is a sharp adjective – it describes a category that has no 

tolerance range, precluding fuzzy boundaries and borderline cases. Tolerance is often used to 

measure the degree of vagueness an adjectival predicate introduces to a proposition. Tolerance-

governed adjectives may be split into two subsets: absolute and non-absolute (Burnett, 2014). 

Where both the positive and negated form of a predicate have a tolerance range, the predicate 

is non-absolute, and allows for symmetric forms of inference. Where only one predicate form 

has a tolerance range, the predicate is absolute (maximal-criterion for the positive form, 

minimal-criterion for its negative form). Asymmetric inference patterns are permitted here. 

‘Tall’ and ‘short’ are examples of non-absolutes, while ‘straight’ and ‘bent’ are maximum-
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criterion absolute and minimum-criterion absolute respectively. The difference comes down to 

the falsifiability of propositions about membership. Non-absolute predicates’ positive and 

negation forms may both be used in Soritical arguments, whereas absolute predicates have one 

extension (negative or positive) that precludes Sorites arguments from being constructed for it. 

Neither are sharp, but the latter are taken to be ‘less vague’ than the former. 

 

3.1.5. Vague Modifiers 

 

In natural language, vagueness generally manifests in combinatorial relations, rather than in 

the simple predicate form our analysis has centred on so far. This is to say that an effective 

analysis of vagueness must be mereological. Modified vague expressions take the generic form 

<modifier> + <expression>, with variation in ordering and structural properties determined by 

the expression type. An expression can take many forms, atomic or compound, including but 

not limited to predicate expressions, descriptive expressions, deontic expressions, conditional 

expressions, temporal expressions, etc. Vague modifiers can generally be classified into three 

categories: adjectival modifiers, quantifying expressions, and frequency adverbs (Lakoff, 

1973)  (Lewis, 1975).  

Examples are provided to illustrate how modifiers of each category act on expressions. 

In each example below, four pairs of sets are defined. In each pair of sets, the first set contains 

modifiers, while the second contains expressions they may modify. Example sentences are 

given. These contain modified expressions that may be generated by combining elements of 

the modifier set with elements of the expression set.  

Note that in English sentences, modifiers may not be grammatically adjacent to all 

expressions they modify. This is particularly true for quantifying expressions, where the 

quantifier is often adjacent to the variable(s) it quantifies, rather than adjacent to the expression 

whose domain the quantifier is restricting (e.g., “Some x are large”, where the quantifier some 

and adjectival expression large are separated by the variable x and the linking verb are).  

Adjectival modifiers (or adverb modifiers) often act as indicators of the presence or 

absence of vagueness in a sentence or set of sentences, and may include straightforward 

negation/negational predicates: 

 

a) {slightly, perfectly} {clean, tidy} à This street is perfectly clean. 

b) {a little bit, very} {dirty, messy} à Her room is a little bit messy. 
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c) {extremely, not very} {tall, short} à Jack is extremely tall. 

d) {unusually, worryingly} {obese, thin} à That cat is worryingly thin.  

 

Taken as indicators alone, choice of modifier can be divorced from the semantic content of its 

applicant. On a functional level, they either strengthen or lessen the vagueness of the adjectival 

predicate they apply to. However, from our example set above it is clear that in actual language, 

norms of sense and meaning can be lost in the selection of modifiers (e.g., in describing a room 

as ‘perfectly messy’ we go outside the norms of use for that modifier/adjective combination). 

This goes beyond the question of vagueness but does illustrate the notion of modifiers selecting 

for certain instantiations of vagueness. What is relevant is that strengthening adverb modifiers 

may not negate vagueness completely; ‘Jack is extremely tall’ generates the same borderline 

cases as does any proposition that depends upon a comparison class. Similarly, modifiers such 

as ‘unusually’ and ‘worryingly’ both strengthen their adjectival predicate and invite analysis of 

the proposition’s comparison class. The latter point is particularly relevant. There is significant 

controversy over whether generality is a form of vagueness, or a closely related but distinct 

type in the vein of ambiguity (Carlson & Pelletier, 1995) (Zhang, 1998) (Lakoff, 1970). In the 

context of adjectival modifiers, however, sentences of kind (d) feature adjectival modifiers that 

strengthen, weaken, or otherwise highlight their objects’ genericity or lack thereof. This 

modification is framed in terms of the proposition’s comparison class dependencies, and so can 

be reasonably described as a form of general adjectival modification. 

 Quantifying expressions are linguistic structures that measure and describe sets 

(including empty sets). Quantifying expressions typically involve domain restrictions (von 

Fintel, 1994). Quantifiers delimit the application domain of an expression; vague quantifiers 

only loosely delimit: 

 

a) {almost all, more than half, some} {unemployed, employed} à More than half of 

his friends are unemployed. 

b) {every, no} {married, single} à No bachelor is married. (not vague) 

c) {around, nearly} {ten, a million} à He lost nearly a million pounds. 

d) {between, before} {2024, January/July} à The election will be held between 

January and July. 

 

Modifiers of the kind found in (a) indicate quantificational vagueness, with the closure 

modifiers in (b). While the latter sentence is trivially specific, statements of the former kind are 
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vague in virtue of the looseness of their modifiers, and despite the sharpness of their adjectives 

(‘single’ and ‘married’ as categories of marital status have complete definitions and fixed 

criteria for membership) (Lasersohn, 1999). (a) and (c) instantiate vague quantification in a 

different way to that in (d). The latter instantiates temporal vagueness in a way that leaves 

quantity (in this case, a quantity of days and weeks) open.  

 Frequency adverbs function similarly, but as indicators of temporal or quantificational 

norms. They are used to specify (or loosen) the scope of a state of affairs, and/or the contexts 

in which a property holds: 

 

a) {usually, sometimes} {even, odd} à Our chicken usually lays an even number of 

eggs on Mondays. 

b) {always, never} {even, odd} à Multiples of five are always odd. (false, but not 

vague) 

c) {generally, typically} {weekends, weekdays} à I typically work on weekends. 

d) {mostly, rarely} {vegan, pescetarian} à Fast-food is rarely vegan. 

 

In (a), while certain elements of the sentence are fixed (including a temporal aspect, i.e., 

Mondays), and even is sharply defined, a broader temporal vagueness is generated in using 

usually as a frequency modifier. Contrast this with a sentence of kind (b). Here, the modifier 

always closes the sentence to frequency vagueness. The sentence communicates false 

information, but its truth conditions are fixed, well-defined, and verifiable. 

 

3.1.6. Behaviour under Ellipsis; Resistance to Disambiguation 

 

Discussions of comparison classes and borderline cases may trigger further questions as to the 

relationship between descriptive and categorical statements. In the context of vagueness, we 

might wonder why adjectival predicates are so Soritical, yet the same is not said for nouns in 

general – do they not themselves rely on comparison classes for meaning? The answer is that 

the problem of vague nouns is indeed a significant one. In addressing this, we have an 

opportunity to further differentiate vagueness and ambiguity.  

Typical nouns are multidimensional and generally sharp (Kamp, 2011) (Kamp & 

Partee, 1995). This means that they are defined by similarity – that is, the similarity of the 

properties shared by the objects that instantiate them. ‘Chair’ or ‘man’ are examples of nouns 
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that have multiple instantiations defined by shared essential properties. And while the 

adjectival expressions used to describe these properties might be contentious or vague in some 

cases, the issue is not with the categories themselves (Hampton, 1997). While the existence of 

necessary properties is a contentious topic, that discussion is beyond the scope of the project. 

Consensus on the essential properties specific to certain categories rarely changes, and as such 

the nouns that refer to those categories tend to be fixed.  

An exception of this is the case of vague nouns that give rise to borderline cases. 

Examples of these include ‘heap’ and ‘mountain’ – in both cases, the line that distinguishes 

positive and negative extensions of these nouns cannot be drawn, once again falling foul of 

Sorites. As covered in our legal analysis, ambiguous nouns can either be unspecific by virtue 

of an incomplete or obscured propositional scope, or unspecific due to their role as non-rigid 

designators. Either way, disambiguation may be applied to strengthen their referential integrity. 

An indicator of vague nouns, in contrast, is a resistance to disambiguation, particularly under 

the ellipsis test (Zwicky & Sadock, 1975). Consider two sentences: 

 

a) Alex went to the bank, and John did too. 

b) Thorpe Fell Top is a hill, Whernside is a mountain. 

 

The noun ‘bank’ in the first sentence has only two possible readings – either Alex and John 

both went to the riverbank, or they both went to a financial bank. The disambiguation of the 

first conjunct entails the disambiguation of the second elliptical conjunct. In contrast, not only 

is disambiguation not applicable in the second sentence, but any line drawn between ‘hill’ and 

‘mountain’ when clarifying the first conjunct will not necessarily hold for the second – the 

contested nouns generate borderline cases. 

  

3.2. Taxonomy 
 

We have now explored each indicator of vagueness in the list outlined at the beginning of the 

previous subsection. In summary, we have identified the following types of interrelated 

indicators for vagueness:  

 

1. Comparison class dependency (adjectival predicates, borderline cases and fuzzy 

boundaries, comparison class-determining for-phrases, judgement-determining 

phrases) 
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2. Tolerance-governed predicates (absolute and non-absolute relative adjectives) 

3. Vague modifiers (adjectival modifiers, frequency adverbs, quantifying expressions) 

4. Vague nouns (resistant to disambiguation, Soritical nouns) 

 

Taking stock of what we have learned, we can begin to formulate our taxonomy. While we 

might be tempted to use the indicator typology above as a direct basis for this, recall that the 

definition of a controlled natural language is one that only preserves relevant facets of the 

natural language from which it derives. Our aim is to implement a CNL with mechanisms that 

detect and translate to an underlying logic the features and structures of vague language. Our 

analysis of indicators was intentionally finely grained to reflect the complexity of natural 

language. However, this granulation may not be desirable from a design and implementation 

perspective. As such, a minimalistic taxonomy that unifies the central themes of the typology 

above will be provided here, to be used as the basis for our CNL’s grammar and its 

implementation. 

 It is clear from our analysis that adjectives, either in predicate or modifier form, are the 

primary source of vagueness in natural language. However, we should also note that in the 

specific context of legal language, descriptive sentences do not play a central role. Legal 

language is concerned with deontology and contingencies. Descriptive language is used, but in 

service of the primary purpose of the contract. As such, our taxonomy should be designed 

around the role that adjectival predicates and modifiers play in legal contracts specifically, 

rather than around the nuances of its place in natural language. 

 Deontic logic is favoured for law specific CNLs partially because of its capacity for 

modal expressions. That is, it allows for the language of possibility, contingency, and time. For 

our CNL to meet its requirements, it too must have capacity for this. Further, it should reflect 

how vague language functions within those modal aspects. Vagueness as it relates to temporal 

expressions is particularly relevant in the context of law. The time periods in which obligations, 

rights and inhibitions hold are often central to a contract, and potential sources of contention. 

Controversy over the details of financial and logistical obligations are similarly common. The 

common root is often the presence of vagueness in a quantifying expression, like the kind 

explored in our analysis subsection. 

 Finally, vagueness in legal language may manifest as inexactness about the nature or 

degree of a relation between two subjects, entities, or timeframes. We saw this in our first case 

study in chapter 2, where repeated use of loose quantifiers about time (‘between x and y’, 

‘within x days’ etc.) led to controversy around obligations and fulfilment (section 2.5). This 
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form of vagueness has no natural analogue in our indicator typology. It might be defined as a 

hybrid between quantification and deontic, where an expression of the latter is loosened by the 

vague modifiers of the former kind. 

 Considering these observations, the following taxonomy will be used: 

 

1. Degree Vagueness (adjectival predicates/modifiers, comparison class dependencies, 

tolerance-governed predicates, vague nouns) 

2. Quantification Vagueness (generalizing determiners, loose quantifiers, imprecise 

prepositions and adverbs, frequency modifiers) 

3. Relational Vagueness (relational prepositions and adverbs, relational quantifiers) 

 

Degree vague statements are those that rely upon a comparison class for meaning and 

referential value. They utilise adjectives and adjectival modifiers (particularly adverbs and 

qualifiers). Examples include “Steve is a moderately greedy man”, “you’re extremely late”. 

Soritical predicates instantiate degree vagueness. 

Quantification vague statements are those that whose composite expressions have 

been modified or qualified to obscure their referent(s), or to loosely restrict the domain 

application of one or more of its composite predicates. This can apply to both numeric and 

temporal expressions. Examples include “I’ll deliver your parcel around 7 o’clock”, “I like 

some flavours of ice cream”. Quantification vague statements are often those that express 

approximation (‘almost’), that use generalizing determiners (‘some’), etc. Generally, the truth 

conditions of a quantificational vague proposition are precise but are obscured by use of 

loosening modifiers and determiners. Such expressions are often open to precisification (e.g., 

‘by some flavours of ice cream, I meant chocolate and vanilla’). 

Relational vague statements are statements that define a relation between two 

expressions or terms, but through use of inexact modifiers leave either the nature or degree of 

that relation open to varying interpretation. Relational vagueness is highly related to 

quantificational vagueness but expresses an imprecise relationship between variables, rather 

than direct quantification on a variable or domain restriction of a predicate. A relational vague 

expression is one that draws two objects, concepts, or entities together into some relation (e.g., 

‘owes money’), providing upper and lower bounds for the relation to hold and/or for its 

conditions to be met, but lacking details on its interim points. Examples include ‘You owe me 

between $200 and $400’, ‘At best, I see you as an acquaintance. At worst, you’re my enemy’, 

‘My dog is something between a Labrador and a Weimaraner’, ‘I’ll send you a minimum of 
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200 chickens in 2014, and a maximum of 500 chickens between now and 2016’ (drawing 

together the vague quantifiers minimum/maximum/in and the loose relational modifier 

between). The truth conditions of such propositions are generally fixed, but are often hard to 

assess, requiring further specification or context. 

 

 

 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In natural language these broad types necessarily interact with one another. A relational 

statement might loosely bind together two sub-statements whose referents have been made 

vague through quantificational or adjectival modifiers. As such, a highly modular design will 

be used in the design and implementation of our CNL grammar. Before we turn to methodology, 

however, a final aspect of our analysis remains.  
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3.3. Modelling and Applicative Challenges 

 

We might reasonably assume that the abundance of literature explored in this section and in the 

previous one would provide a clear direction for approaching the implementation of our 

controlled natural language, and for implementing mechanisms to measure vague content. 

However, this is not the case. Various obstacles exist for the application of formal models of 

vagueness to a law-specific controlled natural language. Because they have impacted both the 

design and implementation process of the project, it is worth expounding the central challenges 

encountered here. However, this discussion will be limited – this is because many of the issues 

here go beyond our scope. As such, we will only highlight relevant issues, and will limit 

technical discussion of the models touched upon for the sake of brevity. 

 An overarching issue with scholarship on vagueness is its orientation towards 

metaphysical and epistemological questions. This is the case both in legal scholarship and in 

linguistics. Legal literature on the topic of vagueness often treats it as a problem to be solved. 

In identifying the problem, legal scholars often lean on philosophical literature on vagueness. 

It is here that for the most part, law-specific discourse is replaced by discussions on metaethics, 

ontology and epistemology, and ceases to be directly relevant for our purposes. A similar 

problem arises in linguistics. The literature on vagueness in formal semantics is often at pains 

to emphasize its narrow scope. As Kamp and Sassoon put it, “Efforts to solve the Sorites 

paradox have uncovered a range of important connections between vagueness and other aspects 

of language and thought. Linguists traditionally leave it to the philosophers to deal with the 

Sorites and put their own efforts into dealing with other correlates of vagueness in natural 

language and their consequence for grammar.” (Kamp & Sassoon, 2016). However, throughout 

the literature, this boundary is constantly pushed up against by linguists. For instance, attempts 

at modelling the tripartite division of a vague predicate’s application domain have been plagued 

with old philosophical questions as to the relationship between sense and reference. Discussion 

on the fuzziness of boundaries within application domains quickly turn to the questions of 

second, third, and higher-order forms of vagueness, and of infinite regression (Williamson, 

1994) (Sorenson, 2001) (Wright, 2010). Again, to quote Kamp and Sassoon, “Since our primary 

focus is on the semantics of vagueness as it manifests itself in the ways we speak, and since 

there is no room to discuss all aspects of vagueness, we have decided not to include higher 

order vagueness.” (Kamp and Sassoon, 2016). The result is that much of the literature on formal 



 32 

modelling of vague language relies upon reference to other disciplines (and therefore 

potentially different models and systems of logic) to fill in its gaps. 

 This poses issues for our project. We are not only interested in understanding vague 

language as a linguistic phenomenon. We are designing a controlled natural language, intended 

to model vague language microcosmically, for a very specific domain. Lack of consensus as to 

how vague language and its paradoxes should be formalized is problematic for our purposes. 

Philosophical literature on the topic goes some way towards clarifying this issue, but also 

highlights a deeper conflict at the centre of the project: between deontic language as a means 

of describing objective states-of-affairs, and of vague language as rooted in subjective agency 

and semantic judgement. The conflict between rules-based models of language and models of 

language derived from natural language processing and semantic webs is also relevant, but 

pertains more to practical challenges of implementation. As such, detailed discussion of this is 

delayed to chapter 4, where it is examined in the contexts of both the CNL and of the auxiliary 

code that implements our vagueness quantification mechanisms. 

An example of a prominent and complete approach to modelling vague language, and 

one that retains the principle of bivalence, is that of supervaluationism (Lewis, 1999) (Fine, 

1975) (Keefe, 2008). Supervaluationists hold that if a statement instantiates a valid schema of 

classical logic, that statement is valid regardless of the verifiability of its components’ truth 

conditions. On a supervaluationist model, the supertruth of a proposition 𝑃(𝑎) ∨ ¬𝑃(𝑎) is 

secured regardless of whether P is a vague predicate, and whether a is a member of the truth-

value gap extension of P’s domain. Indeed, on a supervaluationist model, the question of P(a)’s 

truth value is non-existent – alone it is neither true nor false, but rather inherits its truth value 

from the schema in which it is a component. Various mechanisms might be proposed for 

expressing relations between vague components – e.g., through the introduction of a new 

operators between predicates that denote the intersection of their truth-gap extensions, or, 

alternately, that order vague propositions based on the degree of contextual information that 

support or negate them. 

From the point of view of designing a CNL, supervaluationism would seem useful as a 

basis for avoiding paradox. We could argue that, on adopting a supervaluationist approach, we 

would have justification for only preserving the law of classical logic into our underlying logic. 

We could argue that, given this, there is no further question as to whether we should restrict the 

Sorites Paradox at the level of syntax or through its omission in our underlying logic. And while 

the technical and time restraints of the project do impel us to adopt this approach (or some 

auxiliary form of it), there is a strong argument to be made that reduction to the rules of classical 
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logic obscures the unique semantic content and mechanisms of vague language, and whether 

this is desirable in the context of a controlled natural language.  

The alternative is to adopt a form of many-valued logic that sacrifices the principle of 

bivalence in favour of preserving vagueness as a semantic property. An example of such a logic 

is paraconsistent logic (Priest, 1979). Put briefly, on a paraconsistent reading of 𝑃(𝑎) ∨ ¬𝑃(𝑎), 

if a is a borderline case of P, then P(a) is both true and false. The set of possible truth values 

in paraconsistent logic is {1, (1, 0), 0}, where 1 denotes truth, 0 denotes falsehood, and (1, 0) 

denotes joint truth and falsity. Where a is a borderline case of P, P(a) returns a truth value of 

(1, 0). This of course necessitates new systems of inference and contradiction validation, the 

translation of which into a controlled natural language should not be limited to the legal domain 

- and so are beyond our scope. 

All this is to illustrate the contention that plagues models of vagueness, and the 

problems that this generates in our project. Because contract language is by nature 

deontological, and deontic logic is a form of philosophical logic that preserves the classical 

laws of inference, in designing our CNL we might naturally favour a model of vagueness that 

does not throw out bivalence. The trade-off is that we are sacrificing unique properties of vague 

language. To some degree, this is desirable – the Soritical paradox and related problems of 

vagueness have no role to play here and so should not be modelled. However, restrictions on 

vague structures have other consequences for our CNL. For instance, asymmetric and 

symmetric forms of inference generated by tolerance-governed predicates cannot be modelled 

in a binary truth value system. In the reduction of vague language to the laws of inference, 

connectives, and operators of classical logic (e.g., through the translation of our CNL to 

Prolog), the subjective underpinnings of comparison class dependency and tolerance-governed 

predicates would be lost – classical logic has ‘truth’ as its only semantic content.  

In computational models of argumentation and reasoning (similarly rooted in subjective 

language), rules of inference are implemented through the introduction of new operators that 

denote the relationship between speakers, audiences, their frames of belief, and a set of pre-

established knowledge/facts (Hunter, 2022). We might be tempted to pursue a similar approach 

to resolve the apparent conflict between classical logic and vague speech. But ultimately, this 

would be misplaced in the context of a legal CNL (at least, one of this scope). Legal language 

is concerned with the language of prescription, lacking speakers and listeners in the traditional 

sense. It is interpreted, and in that sense might be said to have ‘listeners’, but its content is not 

determined by the subjectivity and empirical judgements of the lawyer(s) who drafted it.  
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Further, a contract exists to construct a restricted universe consisting of various states-

of-affairs, obligations, parties, and contingencies. Outside of data driven contracts, which may 

automatically check propositions about some stored set of information (stock prices, GPS 

locations, bank balances, etc.), contract language is not oriented towards the notion of truth 

conditions and their validation or falsification – such concerns are a posteriori. A contract’s 

fundamental logical requirement is that it should not contain internal contradictions. It should 

not express any information about the subjectivity of its author. Contracts lack frames of belief, 

and instead are framed by the norms of the legal sector they pertain to (i.e., commercial law). 

These norms determine how contracts are interpreted, and so are in this sense subjective, but 

do not involve individual speaker agency in the traditional sense (i.e., intentionality, mental 

causality, etc). Subjectivity therefore is limited to the judgement of its interpreters; and the 

interpretation of the content of a contract is to a significant degree pre-determined by the norms 

of language usage, e.g., in the business sector (which aims towards some consensus on the 

extensions of commonly used adjectives such as ‘early’, ‘late’, ‘best efforts’). Where those 

norms fail to settle controversy over interpretation is where vague language becomes 

significant (either through its intentional use in the drafting process, or as a source of conflict 

over meaning between parties after the fact). 

The properties specific to contract language distinguish it from those of traditional 

speech, and how speech is typically analysed and formalised. On a semantic level, we have 

shown how vague language centres around the agent who uses it and the listener who judges 

its contents. It is oriented towards an external world that its propositions reference and upon 

whom its truth conditions rely for verification. This is the central conflict that must be 

reconciled when modelling both vague and deontic semantics.  

The following chapter (‘Methodology and Implementation’) outlines the design and 

implementation of our CNL in light of this conflict. It outlines what mechanisms were used to 

strike a balance in fulfilling both the deontic and vague language requirements of the project. 

It also explores the advantages and drawbacks of our approach. It also offers some suggestions 

as to how the project might be expanded. 
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4. Methodology and Implementation 
 
This chapter outlines the design and execution of our controlled natural language. Functionality 

for quantifying and ‘scoring’ the vague content of contracts drafted in the language is also 

expounded here.  

 We begin by outlining the Backus-Naur form of our CNL’s grammar, and how the 

taxonomy introduced in the previous section informed its design. We identify the core aspects 

of the grammar and how they relate to the specific requirements of contract law. The design of 

the quantification mechanism is discussed in the context of similar algorithms. We provide an 

example of a simple contract written in our CNL. 

 A technology review is provided. We discuss Haskell and its Parsec library, our 

reasoning for using it, and the properties it locked into the project code. We discuss the benefits 

and drawbacks of the Parsec library as a tool for modelling vague and ambiguous language. 

The benefits, challenges, and restraints of our choice of implementation language are identified. 

 Key features of our code are then summarized, with commentary on how they 

implement the project requirements. The contract example from our exposition of the grammar 

is sent as input to our parser, and the parse tree it generates is outlined and explained.  

 

4.1. Grammar 
 
The design of our controlled natural language was informed by its primary requirements: 

 

1. a capacity to capture common syntactic structures present in legal language,  

2. a clear mechanism for expressing deontic statements,  

3. a degree of flexibility to allow for non-specific and vague language to be used where 

necessary.  

 

The first step of the design process was identifying the relationship between the different points 

of the above criteria. In real legal contracts, typically all three criterium are present as features 

of legal language and work in concert with one another to generate meaning. As such, any 

grammar that models legal language must be modular – that is, it must allow for the chaining 

of different statement types together into compound statements, without discarding the specific 

character of the composite parts. Where that character is vague, our controlled natural language 
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must reflect the different forms it might take – taken directly from the taxonomy outlined in 

the previous chapter. 

 Before we move onto an examination of the grammar itself, the question of nouns 

should be addressed. As previously established, ambiguity and vagueness are distinct linguistic 

phenomena, though often play similar roles in natural language. Due to technological 

restrictions (outlined in the next section), it is out of the scope of this project to resolve the 

problem of reference for ambiguous and vague nouns. Regardless, the issue has not been 

ignored. Indeed, the decision to preserve degree vagueness into the underlying logic, and the 

weightings that tokens of this type were given for quantification (section 4.2.) was taken as a 

response to the potential problems that imprecise nouns may generate in legal contracts (as 

discussed in section 2.4.). This is to say that while ambiguous nouns are not explicitly present 

in the grammar, they have directly informed the design process.  

 

4.1.1. Introduction to the Grammar 
 

First and foremost, we were concerned with providing reasonable accommodations for modal, 

deontic, and vague language (and, most importantly, expressions that combine all elements of 

all three). Note that although deontic language is a subset of modal language, we make a 

distinction here for the purpose of emphasizing differences in application. That is, by modal 

we mean tensed expressions (future verbs, etc) and expressions about contingency. Deontic 

expressions here specifically relate to obligations, permissions, and inhibitions. 

The broader categories of the taxonomy are instantiated by particular statements, 

expressions, and predicates. Degree vagueness manifests in the form of descriptive expressions 

(‘The chicken is frozen’) and within broader deontic statements (‘Alex will deliver to John a 

gold bar’). Relational vagueness is represented through certain modifiers and determiners 

(‘John will pay Alex maximum $100 minimum $500’, ‘Between 2022 and 2024 Alex will 

deliver to John 500 geese’). The latter example instantiates form of temporal statement (the 

other form being that which manifests quantificational vagueness). Quantificational vagueness 

manifests in the form of approximation expressions (‘John refunded Alex around $70’) and 

minimal-maximum generality (‘Alex will deliver to John at least 10 televisions’). 

 We were also concerned with balancing expressivity with a sufficient level of 

uniformity so as not to over-complicate sentences of the CNL (undesirable on a usability level). 

Some restriction of expressive freedom is also obviously a necessity for parser implementation. 

As such, while a degree of freedom is given to the end-user when drafting contracts, structure 
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is enforced through pattern and keyword requirements. The following subsections outline the 

key design concepts in the grammar, while the subsection containing the abstract syntax (4.1.5) 

gives them explicit form and provides an example of a contract drafted in the grammar.  

 

4.1.2. Statements 
 

The fundamental building blocks of our grammar are statements, expressions, and 

predicates. This subsection will outline statements; subsections 4.1.3. and 4.1.4. will expound 

expressions and predicates. Statements are constructed either from other statements, from 

chained expressions (most of which are composites of other expressions), or from some 

combination of both. This format was chosen to better emulate the modularity of natural 

language. 

Sentences of our controlled natural language fall under one of nine statement types, 

based on their structure. Statements are demarcated and connected by the period/full stop 

character. Note that, due to specific properties of our implementation language (see section 

4.3/4), the full stop is a conjunction operator for statements, and so must not be used to end a 

set of statements. Here we will provide brief definitions of each statement type, and an example. 

The defining aspects of the statements are outlined in italic; see the abstract syntax (4.1.5) for 

all keywords and/or patterns that define each statement type. 

 

1. Deontic statements are either an obligation, an inhibition, or a permission. E.g., “Alex 

will pay John $200”. 

2. Conditional statements instantiate the ‘if-then’ form. E.g., “If Alex paid John $200 then 

John delivered to Alex 100 eggs”. 

3. Time statements are prefixed with a specific date or with an expression pertaining to 

time. E.g., “On 1 January 2000 Alex paid John $200”. 

4. Degree vague statements are descriptive. E.g., “Alex is very litigious”. 

5. Disjunction statements express exclusive choice. E.g., “Either John delivers to Alex 

100 eggs or John will refund Alex $200”. 

6. Negation statements outline a non-existent situation, event, or property. E.g., “It is not 

the case that John delivered to Alex 100 eggs”. 

7. Conjunction statements connect two affirmative statements. E.g., “It is the case that 

John refunded Alex $200 and it is not the case that Alex has permission to sue”. 
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8. Contingency statements express a potential future event relevant to the contract’s 

performance. This goes some way towards implementing force majeure when used in 

concert with conditional statements. E.g., “The warranty will expire”. 

9. A Component is a pair of statements connected by a period. E.g., “Alex will pay John 

$200. Either John delivers to Alex 100 eggs or John will refund Alex $200”. 

    

A contract is comprised of one or more statements. Where more than one statement is present, 

these will be connected as components. An object in our CNL must be comprised of language 

structures that map to statements – that is, incomplete statements or lone expressions outside 

of a statement structure are illegal under our grammar.  

When designing our statements, where possible the aim was to keep their forms as 

naturalistic as possible. Given that controlled natural languages are programming languages 

with parsing requirements, this was not always possible – conjunction and negation, for 

instance, are fairly unwieldly (‘it is the case’, ‘it is not the case’). Expanding the grammar for 

naturalism could form the basis for future work. 

 

4.1.3. Expressions 
 

Expressions can be atomic (such as a noun string) or comprised of other expressions (like date, 

combining day/month/year expressions). They can also contain predicates. An example of the 

latter is the expression type vague quantifier, which is comprised of a modifying predicate 

(e.g., ‘around’) and a quantifying expression representing the quantifier and the variable being 

quantified (e.g., ‘100 bicycles’). See the next subsection 4.1.4 for more on predicates.  

Expressions represent a range of grammatical elements, types, and reference terms, all 

of which correspond to constituents in parse trees for objects of our CNL. Expression types 

range in complexity and are instantiated by different syntactic patterns and keywords. The 

decision to include elements that are not traditional ‘expressions’ (e.g., currency types, 

quantifiers) was made for implementation purposes (see section 4.4), and for the sake of 

modularity. As such, expressions under our grammar should be taken as (a) mechanisms for 

modelling certain semantic elements of natural language relevant to our project goals, (b) as a 

‘glue’ that binds the constituent elements of a statement, and (c) as a means of systematically 

assigning token type to the constituents of a parse tree. 

When designing the grammar, the decision was made to focus expressive functionality 

in deontic statements as it is there that potential miscommunication could arise. As such, while 
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the structure of obligation expressions is fixed as a binary relation between two parties, 

characterized by the deontic aspect and tense of that relation (i.e., “<noun> will deliver to/will 

refund/will pay <noun>”), the details of the object or quantity involved in the obligation are 

more open, through the availability of adjective insertion and quantification. An expression of 

obligation might therefore take various forms: e.g., “John delivered to Alex a broken clock”, 

John will refund Alex at least $200”, “John will deliver to Alex around 100 clocks”, etc. 

Similarly, deontic statements can be nested in larger statements that add context to their deontic 

properties, e.g., through the use of predicates in a time statement “Between January and March 

John will deliver to Alex fruit”, or through the use of composite conditional and degree vague 

statements: “If Alex is dissatisfied then Alex has permission to exchange”. 

 Note that on our grammar, deontic verbs have a special status – that is, they are not 

tagged under the expression type verb, but under the particular deontic aspect they are 

expressing, and the tense that deontic aspect is expressed in (e.g., future obligation). See the 

complete syntax (4.1.5) for further information.  

 

4.1.4. Predicates 

 

During design, a decision had to be made as to whether to include non-vague modifiers, 

quantifiers, relational operators, etc., in the grammar. Ultimately, it was decided that 

strengthening or loosening adjectival modifiers (“very”, “slightly”, etc.) would be accounted 

for by the adverb expression type and implemented using pattern matching on statements. Non-

vague quantifiers (‘all’, ‘exactly’, etc.) would be excluded. It was judged that the absence of a 

vague quantifier in a quantifying expression (e.g., “John delivered to Alex 100 clocks”) entails 

specificity without the need for dedicated predicates.  

The decision was made to limit predicates to those that instantiate vague language. 

Informed by our taxonomy, predicates are either quantificational or relational vague. It was 

also determined that the set of predicate words recognizable to the parser/lexer should be 

limited for scope and to limit excessive verbosity. Our choice of words was informed by the 

example legal text (outlined in chapter 2). The most frequently used terms were ‘between’ and 

‘within’ – the former is present in our grammar as under vague relation; the latter is under 

vague quantifier. Other words (‘in’, ‘after’, ‘before’, ‘around’, ‘at least’, etc.) are also included 

in the grammar. Vague predicates are further differentiated by whether they pertain to temporal 

elements of a statement or to objects.  
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It should be noted that in the implementation, vague quantifiers fall under the Pred 

type, whereas vague relations fall under Op. Terms recognizable to the lexer/parser fall under 

reserved and reservedOp. This was required for reasons related to implementation strategy 

(see subsection 4.4 on infix and prefix operations) but does not impact the CNL’s use and/or 

alter its syntax. 

 

4.1.5. Syntax 
 

The following syntax outlines how objects of our CNL may be constructed. Syntactical 

elements are contained within chevrons (< >).  A valid statement “Between 2022 and 2023 John 

will pay Alex around $200” instantiates the syntactical form <temporal-range> <noun> 

<future-payment> <object-quantifier> <usd>. The presence of a question mark (?) immediately 

following an element indicate that the element is optional. Square brackets ([ ]) denote a list. 

Wherever an aspect of the syntax implements vague language, it is bolded.  

 

Abstract syntax: 

 

<contract>   ::= [<statement>] 
    | <statement>  
 
<statement>   ::= <component> 
    | <conditional> 
    | <time> 
    | <degree-vague> 
    | <disjunction> 
    | <negation> 
    | <conjunction> 
    | <contingency> 

| <deontic> 
 
<conditional>   ::= ‘if’ <statement> ‘then’ <statement> 
 
<time>    ::= <temporal-range> <statement> 
    | <temporal-quantifier> <month> <statement> 
    | <temporal-quantifier> <year> <statement> 
    | ‘on’ <date> <statement> 
 
<degree-vague>  ::= <description> 
 
<disjunction>   ::= ‘either’ <statement> ‘or’ <statement> 
 
<contingency>  ::= <future-event> 
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<disjunction>   ::= ‘either’ <statement> ‘or’ <statement> 
 
<deontic>   ::= <obligation> 
    | <inhibition> 
    | <permission> 
 
<expression>   ::= <noun> 
    | <verb> 
    | <adjective> 
    | <adverb> 
    | <num> 
    | <usd> 
    | <gbp> 
    | <future> 
    | <past> 
    | <vague-relation> 
    | <vague-quantifier> 
    | <day> 
    | <month> 
    | <year> 
    | <date> 
    | <description> 
    | <inhibition> 
    | <permission> 
    | <obligation> 
    | <quantity> 
 
<vague-quantifier>  := <temporal-quantifier> 
    | <object-quantifier> 
 
<temporal-quantifier> ::= ‘within’ 
 | ‘after’ 
 | ‘before’ 
 | ‘in’ 
 
<object-quantifier> ::= ‘approximately’ 
 | ‘around’ 
 | ‘at least’ 
 | ‘at most’ 
 
<vague-relation> ::= <temporal-range>  
 | <object-range>  
 
<temporal-range> ::= ‘between’ <month> ‘and’ <month> 
 | ‘between’ <year> ‘and’ <year> 
 
<object-range> ::= ‘between’ <gbp> ‘and’ <gbp> 
 | ‘between’ <usd> ‘and’ <usd> 
 | ‘between’ <num> ‘and’ <num> 
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<inhibition>   ::= <noun> ‘may not’ <verb> 
 
<permission>   ::= <noun> ‘has permission to’ <verb> 
 
<obligation> ::= <future-payment> <object-quantifier>? <usd> 
 | <future-payment> <object-quantifier>? <gbp> 
 | <future-payment> <object-quantifier>? <num> 
 | <future-delivery> <noun> 
 | <future-delivery> <quantity> 
 | <future-delivery> ‘a’ <adjective>? <noun> 
 | <future-delivery> ‘the’ <adjective>? <noun> 
 | <future-refund> <object-quantifier>? <usd> 
 | <future-refund> <object-quantifier>? <gbp> 
 | <future-refund> <object-quantifier>? <num> 
 | <past-payment> <object-quantifier>? <usd> 
 | <past-payment> <object-quantifier>? <num> 
 | <past-delivery> <object-quantifier>? <num>? <noun> 
 | <past-delivery> ‘a’ <adjective>? <noun> 
 | <past-delivery> ‘the’ <adjective>? <noun> 
 | <past-refund> <object-quantifier>? <usd> 
 | <past-refund> <object-quantifier>? <gbp> 
 | <past-refund> <object-quantifier>? <num> 
 
<future>   ::= <future-payment> 
    | <future-delivery> 
    | <future-refund> 
    | <future-event> 
 
<future-event>  ::= ‘the’ <noun> ‘will’ <verb> 
    | ‘the’ <noun> <verb> 
    | <noun> <verb> 
 
<future-payment>  ::= <noun> ‘will pay’ <noun>  
   
<future-delivery> ::= <noun> ‘will deliver to’ <noun>  
 | <noun> ‘delivers’ <noun> 
 
<quantity>   ::= <object-quantifier> <num> <noun> 

 
<future-refund>  ::= <noun> ‘will refund’ <noun>  
  | <noun> ‘must refund’ <noun> 
 
<past>    ::= <past-payment> 
    | <past-delivery> 
    | <past-refund> 
 
<past-payment>  ::= <noun> ‘paid’ <noun> 
 
<past-delivery>  ::= <noun> ‘delivered to’ <noun> 
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<past-refund>  ::= <noun> ‘refunded’ <noun> 
  
<description>   := ‘the’ <noun> ‘is’ <adverb>? <adjective> 
    | <noun> ‘is’ <adverb>? <adjective> 
 
<date>    ::= <day> <month> <year> 
 
<day>    ::= <integer> 
 
<num>    ::= <integer> 
 
<month>   ::= <string> 
 
<year>    ::= <integer> 
 
<string>   ::= <char> 
    | <char> <string> 
 
<char>    ::= ‘A’ | … | ‘Z’ 
    | ‘a’ | … | ‘z’ 
 
<identifier>   := <string> 
 
<integer>   ::= 0 | … | 9 
 
<noun>   ::= <string> 
 
<usd>    ::= ‘$’ <integer> 
 
<gbp>    ::= ‘£’ <integer> 
 
<verb>    ::= <string> 
 
<adjective>   ::= <string> 
 
<adverb>   ::= <string> 
 

An example of a simple contract comprised of valid statements in the CNL grammar is provided 

(figure 2). In section 4.4., this example is given as input to our parser, and a parse tree is 

generated from it. 

 

 

 

 

 

“On 23 June 2023 Alex paid John $3000. Within 2024 John will deliver to Alex a computer. 
If delivery is late then John will pay Alex around $100. Between 2024 and 2026 the 
warranty is valid. If the computer breaks then before 2027 Alex has permission to complain. 
If Alex will complain then either John delivers Alex a new computer or John will refund 
Alex minimum $2500. In 2027 the warranty will expire. If the warranty is expired then 
Alex may not complain” 

Figure 2: An example contract in our CNL 
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The grammar outlines the syntax of the controlled natural language, and an abstract look at the 

rules the parsing functions follow in our implementation. In the implementation, token types 

follow those of the grammar. The nested/branching structure of the grammar was chosen for 

the sake of generating more detailed AST constituents (and so representing more semantic 

content), and for technical reasons - to take advantage of Parsec’s reserved names and operator 

functionality, the latter of which was used to implement predicates and relational operations 

(e.g., deontic obligations between two parties). Upon quantification, we return to the 

overarching taxonomy to measure overall instances of vagueness. 

 

4.2. Quantification 
 

4.2.1. Challenges 
 

A primary requirement is the development of an auxiliary mechanism for measuring vague 

language (in our case, via a post-hoc analysis of a parse tree). The implementation of this posed 

a dilemma. According to the OED, the English language contains at least 450,000 words 

(Oxford English Dictionary, n.d.), a significant proportion of which might be categorized as 

degree vague (descriptive) under our taxonomy. Such words are highly sensitive to the more 

social aspects of language (context, definitional consensus, subjective judgement, etc.), posing 

additional problems for parsing. Our grammar is designed not around the detection of finely 

grained grammatical properties, but around types of vague expressions, modifiers, and 

syntactic indicators. Writing functions to correctly parse and sort all 170,000 words into 

categories would be both an insurmountable challenge and completely nonsensical. As such, 

we faced a choice. We could restrict parsing so tightly as to only allow use of a limited set of 

words and expressions commonly used in contract law (e.g., ‘late’, ‘on time’, ‘on or before’, 

‘in the range of’, ‘reasonably priced’, etc.) that had been pre-tagged as instances of vagueness 

types. This would dramatically reduce the expressive capacity of our CNL, but it would avoid 

the problem of having to find a way of parsing and categorizing unexpected language input. 

The other choice would be to design some functionality to draw from a semantic net database 

(e.g., WordNet), match each term encountered during parsing with its analogue in the database, 

flag certain properties or usages as vague, then sort on this basis.  
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4.2.2. Solution 
 

Ultimately the decision was made that the use of databases like WordNet would exceed the 

scope of the project’s timeframe and resources. As such, the decision was made that a looser 

form of parsing restriction would be implemented, where pattern matching based on some 

keywords would be used to identify and categorize structures of vague language. This choice 

impacted the design of our measurement mechanism. Instead of focusing on quantifying the 

‘raw’ natural language input, our function would instead measure the output of the parsing 

function. One of the few pre-existing algorithms for measuring vague language uses the 

database approach. It is worth touching on here as it directly influenced the design of our 

scoring mechanism. VAGO (Mondeca, Icard, & Claveau, 2023) is an algorithm that draws from 

a lexical database. VAGO’s database is also partitioned by a taxonomy of vagueness, but one 

that significantly differs from our own, having been directly lifted from Alston’s typology of 

vague expressions (Alston, 1964). In VAGO, a score for vagueness and subjectivity is defined 

as the ratio of vague words to number of sentences in a given text (Airbus France, Guélorget, 

& Icard, 2021).  

This form of measurement is adapted in our mechanism, but with two fundamental 

changes (beyond the difference in taxonomies used). First, we do not measure words to 

sentences, but rather vague tokens to total number of components. Second, while VAGO returns 

a total score based on its encounter rate for vague words, our algorithm returns a vagueness 

score, based upon the weighted sums of each token type, in range [0,1]. It does also return a 

ratio, but not of words-to-sentences but of vague tokens to total tokens. The weightings (0.25, 

0.5, and 0.75) were chosen for the sake of consistent balance/distribution, where more 

‘significant’ vague language lies higher on a scale out of 1 and so adds more to an overall 

vagueness score. The decision not to weigh each type equally was made to reflect their differing 

levels of impact in the context of law. This of course entails a degree of subjectivity. However, 

our weightings were not chosen arbitrarily. In our legal analysis, discussions of vagueness often 

manifested as controversy as to at what point in a contract or law an obligation kicks in. 

Similarly, the use of loose language (e.g., in the use of approximation, generalized determiners, 

etc.) was demonstrated in our judgement ruling example (section 2.5). On our taxonomy, such 

language falls under the category of quantificational vagueness. As such, tokens of this type 

are given a weight of 0.5.  

The same logic determines the weighting of relational vague tokens. These are given a 

weight of 0.75. This is because, functionally, they generate similar problems for interpretation 
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as quantificational vagueness, but to an even greater extent. While quantifying expressions 

such as ‘around $200’ are loose, the tolerance range of $200 has reasonable limits, which can 

be invoked in the process of legal interpretation. In contrast, relational vague statements such 

as ‘between $1000 and $2000’ have a much wider tolerance range attached to them. In the 

context of deontic language, imprecision of this kind can be dangerous. As such, relational 

tokens are given a heavier weighting to reflect the fact that upon the norms of legal language, 

this form of vagueness should be avoided wherever possible.  

Finally, degree vague tokens are given a weighting of 0.25. It may initially seem 

surprising that the category entailing adjectival predicates and modifiers is given the lowest 

weighting, given the central role they occupy in vagueness analyses. Indeed, discussion on the 

Sorites Paradox generally concerns descriptive language. The reasoning for this weighting 

concerns ambiguity and non-rigid designators. While the legal theory on vagueness often does 

centre on Soritical predicates, this is generally discussed within the context of judicial 

interpretation (e.g., in our Bad Samaritan thought experiment). Our case studies in chapter 2 

suggest that commercial litigation may be more likely to come as the result of referential 

ambiguity than from the use of tolerance-governed predicates. As we have established, the 

decision not to use a semantic database restricts the breadth of our parser code. It means that 

we cannot a priori identify the grammatical character of a string – the flagging of nouns, verbs, 

etc., must be done through contextual pattern matching. This means that we have no reference 

point for distinguishing different kinds of nouns. As such, the ability to differentiate rigid and 

non-rigid designators is beyond the scope of our project code, as is the ability to differentiate 

between a vague noun (‘heap’) and an ambiguous one (‘chicken’). In the context of commercial 

law, ambiguity over whether a contract calls for frozen chicken or live poultry is more pressing 

an issue than the question of a heap’s fuzzy boundaries. Paradoxically, degree vague language 

allows for precisification when it comes to ambiguous nouns (e.g., in prefacing ‘chicken’ with 

‘live’ or ‘frozen’). The decision was made then to use adjectives and adverbs as a means to 

lessen the problem of ambiguity, or at the very least to offer the end user the option to do so. 

The non-zero weighting reflects the fact that degree vague language is not innocuous – it still 

contributes to the overall vagueness score, compounding with frequent use.  

 

4.2.3. Formulae 
 

The implementation code for our scoring system is provided in section 4.5. The following 

formulae formalise the process. 
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 Before the final score is calculated, the three categories of vagueness are quantified via 

an analysis of the parse tree for a contract denoted by 𝜙. For every token that instantiates a 

particular form of vagueness, a variable 𝑥 is added to the set X. Each x is either 0.25, 0.5, or 

0.75, depending on the category of vagueness being measured for. X sets contain the total 

number n of x values for each category. The contents of X are then summed to get a total score 

for each vagueness category. This is used to calculate the total vagueness score for the contract. 

The cardinalities/card of each X set are used to calculate the total ratio of vague tokens to total 

tokens in a contract, giving information on the frequency of vague language relative to the 

overall contract. 

 

(Degree vague) 

𝑥 = 	0.25 

𝑋 = {𝑥+, … , 𝑥#} 

𝐷ABCDEF =G𝑥H =
#

HI+

	𝑥+ + 𝑥- + ⋯+ 𝑥# 

𝐷BLDMF = |𝑋| = 𝑛 

 

 

(Relational vague) 

𝑥 = 	0.75 

𝑋 = {𝑥+, … , 𝑥#} 

𝑅ABCDEF =G𝑥H =
#

HI+

	𝑥+ + 𝑥- + ⋯+ 𝑥# 

𝑅BLDMF = |𝑋| = 𝑛 

 

(Quantificational vague) 

 

𝑥 = 	0.5 

𝑋 = {𝑥+, … , 𝑥#} 

𝑄ABCDEF =G𝑥H =
#

HI+

	𝑥+ + 𝑥- + ⋯+ 𝑥# 

𝑄BLDMF = |𝑋| = 𝑛 
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When all categories have been quantified, their scores are summed and then divided by 10 to 

obtain a total vagueness score. A higher score indicates a broader degree of vagueness in the 

contract being analysed. Division by 10 was chosen to keep scores small and 

readable/meaningful to the user. Scores may be demarcated into zones. A score below 1 

indicates non-extensive use of vague language. As vague language increases beyond that point, 

each new integer passed indicates entry into a new zone. 

 The scoring function is best used in concert with the frequency (or ratio) function where 

a contract is very short. This is because in shorter contracts, a lower vagueness score may 

disguise a situation in which vague language is used in limited quantity yet still takes up the 

lion’s share of the contract’s overall contents.  

 

(Total score) 

 

𝑅ABCDE(𝜙) =
𝐷ABCDEF + 𝑅ABCDEF + 𝑄ABCDEF

10  

 

(Ratio) 

 

𝑅DLSHC(𝜙) = 	
𝐷BLDMF + 𝐷BLDMF + 𝐷BLDMF

𝑁U
 

  

where 𝜙 is a contract and 𝑁U is the total number of contract components. 

 

4.3. Technologies, Challenges and Considerations 
 

4.1.3. Haskell and Parsec 
 
Haskell was chosen for the implementation language underlying our CNL. It was chosen for 

two primary reasons: for its status as a functional language, and for access to its Parsec lexical 

analysis and parsing library. 

The English language is highly modular. Its sentences are dense sets of interrelated 

lexical and syntactic units. Being derived from English, our controlled natural language is 

similarly compositional, albeit far less dense. The emphasis on vague language units and their 
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impact on the sentences in which they appear reinforces the ‘participatory’ nature of our CNL’s 

cascading component-statement-expression-predicate structure. The unique syntactical types 

introduced in our grammar should be preserved through parser implementation. Because of 

this, the ability to define new algebraic data types (ADTs) for use in parsing was a top 

requirement. Although unique ADTs can be defined in some object-oriented languages, they 

are a fundamental feature of functional languages. Strong functionality for pattern-matching 

was also considered desirable in aligning design with implementation. Because Haskell is a 

functional language, the use of currying and partial application is a central feature, making it 

intuitively well-suited for our purposes. 

While parsing libraries exist for many languages, Haskell gives access to the Parsec 

library (Leijen, Martini, & Latter, 2006). Parsec provides functionality for writing higher-order 

parser combinators (i.e., parsers that take smaller and more specific parsers as input). This ideal 

for parsing a controlled natural language in which different sets of grammatical rules interact 

to govern how a larger input string is interpreted. This is achieved through use of monadic 

structures. Parsec provides functionality for both lexical analysis and parsing, precluding the 

need to write separate functions for each. It provides solid functionality for returning error 

information upon parse failure, which is useful during design and debugging. While Parsec has 

been adapted to other languages beyond Haskell, there was no incentive to adopt a 

reimplementation. The use of Haskell and Parsec necessitates some additional considerations 

(particularly around vanilla Haskell, Parsec, and user-defined algebraic type compatibility) that 

other languages do not. However, this is necessary for access to their unique features – e.g., 

monads, functors and fmap methods, the do syntactic sugar, and combinators - all of which 

played a central role in the development process. 

 

4.1.4. Lexing in Parsec 
 

The decision was made to use Parsec’s pre-built lexers in concert with custom parsing functions 

and lexer constructors, using the former in a limited capacity for the purposes of identifying 

whitespace, strings, numbers, and currency symbols. This means that token types identified 

through lexing are intermediate data, attached to specific ADTs (nouns, adjectives, etc.) by way 

of broader parsing and pattern-matching functions. As such, pre-built tokens are not 

represented in the abstract syntax tree output. While the use of Haskell and its Parsec library 

provides distinct benefits and functionality, it also introduces and ‘locks in’ features. While 
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most of these features were either innocuous or beneficial, some created challenges in aligning 

the project code with the controlled natural language’s intended design and usage. 

Parsec’s built-in lexing functions identify tokens based on predetermined criteria, 

checking strings for whitespace, symbols, etc. They also do the work of extracting identifiers 

from ‘noise’ (parentheses, quotation marks, etc). These functions are accessible as part of the 

Text.Parsec.Token language building module. Utilizing this module brings with it the 

advantage of not having to write separate parsers for parsing standard lexical features 

(whitespace, common punctuation marks, etc.), freeing up development time for parsers that 

enforce rules specific to the structures of the controlled natural language. The module allows 

the programmer to define a language according to a pre-determined set of token constructors, 

then instantiate token parsers based on this definition. Token constructors include 

commentStart (escape characters, e.g., # in Python), caseSensitive (a Boolean value), 

parens (used to parse the value within parentheses), identifier (returns identifiers based on 

the rule(s) outlined in the language definition), etc. Note that the module allows the user to 

import pre-defined language definitions as templates for their own definition (e.g., haskellDef 

for the Haskell language, javaStyle for Java-like languages, etc.). In our case, emptyDef was 

imported. It contains the minimal pre-determined token definition and was therefore most 

suitable for tokenizing input based on our context-specific controlled natural language. There 

is strong functionality for customization (e.g., the ability to define the Parsec type of the first 

character in identifiers). 

A drawback to using this method for lexing is that we are constrained to working within 

the parameters of the pre-determined token constructors. As is clear from a cursory look at the 

importable language definitions and the token constructors themselves, the module is oriented 

towards parsing traditional programming languages. During development, this was mainly felt 

when using the reservedOp (operations) and reserved (names) constructors. In a traditional 

programming language, the demarcation between the two constructors would be 

straightforward, with the former holding the set of all operators used in the language (‘&&’, 

‘=’, etc.), and the latter used to differentiate identifier strings from keywords (‘do’, ‘in’, ‘for’, 

etc). However, given that the generic end-user of our CNL is a legal professional with little to 

no programming experience, more verbose reserved string patterns were necessary. While it 

would be possible to ignore the reservedOp constructor and focus entirely on populating 

reserved’s definition with key words and phrases, the use of Parsec’s infix and prefix operator 

parse rules was desirable for the representation of binary and unary relations (particularly 
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deontic obligations and quantificational vague modifiers). As such, key words and phrases were 

divided between reserved and reservedOp based on semantic properties/roles in the CNL. 

 

4.1.5. Formal Verification 
 

A broader question was that of formal verification according to the laws of classical logic. 

Because a database was not used, lexical types are identified using pattern matching on string 

input. When a contract is sent as string input to the contract parser (parseContract), lower 

parsers and pattern matching helper functions identify legal values. The identification of legal 

values in turn determines which type constructors should be called to generate a parse tree that 

reflects the contract’s structure and content. This is based on what keywords are encountered 

when parsing the contract’s statements (i.e., the contract string’s sub-strings, demarcated by the 

period symbol). Lexical component types (such as ‘noun’, ‘currency’ and ‘verb’) have as their 

legal value free variable strings that are ‘carried over’ from the contract input. The end-user 

has freedom to enter any string or character for use as this legal value, and it is preserved in the 

parse tree (a necessity for specifying the details of a contract). 

This causes some issues for implementing correctness checking. Because Parsec’s error 

catching mechanisms are designed to catch syntax errors based upon a set of rules determined 

by the programmer, it is highly useful when restricting legal input to ensure the correctness of 

parse tree output. It means that keywords can be used to identify how statements and sub-

statements fit together (i.e., conditionals, conjunctions, etc.). And while logical validation can 

be implemented at the point of parsing, this is most efficient when: 

 

1. the string being parsed is subject to highly restricted syntax rules, 

2. the input string is parsed holistically (not split into separate and self-contained sub-

strings governed by different parse rules determined by their content, as is the case 

with statements in our language) 

3. the length of the string is limited, meaning less use of lookahead (or, alternately, less 

‘rollback’ of consumed input when an error is encountered further on when using try) 

 

Consider a basic language with a small set of keywords to denote basic operators {∧,∨, ¬,→

,↔} and with a limited alphabet {𝑎, 𝑏, 𝑐, 𝑑} available for naming variables. A limited set of 

well-formed sentences in that language are possible, and so a limited set of parser rules are 

necessary to catch contradiction, tautology, etc. Even on such a language, as propositions 



 52 

become nested and input grows in length, input may be consumed successfully earlier in 

parsing that becomes unsound in the broader structure, e.g., ((𝑎 ∧ 𝑏) ↔ (¬𝑎)). Catching 

contradictions on longer and more complex input requires more parse rules to be specified, and 

frequent rollbacks pose the risk of increased computational cost. These issues would only be 

compounded in parsing our CNL, with its multitude of statement structures and keywords (i.e., 

the strings that constitute our reserved names and operators). For these reasons, we did not 

attempt to use Parsec to validate the logical structure of the contracts it processes. Rather, it 

was used to enforce the rules of the controlled natural language and to generate parse trees 

from objects written in it.  

It must be noted that Parsec can be used to parse the results of tokenizers. The library 

has its own implementation of prim/primops: the Text.Parsec.Prim module, which can be 

used to implement custom satisfy methods. These methods can in turn be supplied with 

custom functions that test input for some user-determined criterion and output a Bool. This is 

a possible method for testing a parse tree for logical validity. However, given the timeframe 

and primary requirements of the project, the generation of multiple parse trees (and associated 

Boolean functions) was beyond our current scope. Ultimately, the requirements of the project 

were (a) the design of a controlled natural language for the purpose of expressing vague 

structures in a deontic context, (b) program code for parsing objects written in this language, 

for identification of their vague structures, and for generating parse trees that are correct by the 

laws of the CNL’s grammar/syntax, and (c) code that gives a vagueness ‘rating’.  

The scope of the project was centred on the expression and identification of vague and 

deontic statements, not on proofs of their conjectures, nor on the assessment of their logical 

soundness and/or validity. The aim was a controlled natural language for expressing particular 

structures of language, not a modelling language for representing forms of knowledge. Further, 

as we have shown in previous sections, the paradoxes specific to vague and deontic structures 

are highly tied up with semantic content and, in the case of the former, are not necessarily 

resolvable within the laws of classical deduction. As such, the focus when developing our 

project code was not on mechanisms for the a priori identification of contradictions and 

tautologies, nor on the resolution of paradoxes, but rather on ensuring and preserving 

expressive capabilities. If this functionality is not implemented through the restriction of syntax 

at the level of parsing – which it was not here, for the reasons outlined above - it must be 

realised through other dedicated mechanisms. This could form the basis for future work. 
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4.4. Implementation 
 
 
We begin with a brief overview of algebraic types before moving on to an example of how 

combinatorial parsers are used to generate correct parse trees for our controlled natural 

language. We then illustrate how quantification analysis is applied to parse tree output to return 

score and ratio values. In the interests of brevity limited code snippets will be used, and only 

then to illustrate key ideas and features. A full copy of the code is included in the appendix. An 

example of controlled natural language input and parser output is given at the end of the 

chapter. 

 

4.4.1. A Brief Note on Haskell and Notation 
 

Before we begin, the following is a brief explanation of common Haskell notation that appears 

in our code. In Haskell, the >> function is used when we want to ignore the result of a first 

operation and move to a second (e.g., a >> b). This is frequently used in parsing as it allows 

us to consume (and skip over) characters that we do not want to use in further operations. The 

>>= function is used when we want to use the output of one operation as an argument for 

another (e.g., a >>= b). We also frequently utilize the <|> and $ operators. Put very simply, 

the former indicates choice (‘or’). The latter is used in function composition. It allows functions 

to be chained together without needing to use parentheses to control evaluation order. 

 We frequently make use of do notation in the project code. This used as syntactic sugar 

when using the >> and >>= operators. do notation emulates some aspects of imperative 

programming, allowing us to do something akin to (but not actually identical to, as Haskell 

uses functional language compilation and memory management) storing local variables within 

a process to hold interim results using <-:  

 
 

do result1 <- a 
result2 <- b result1 

c result2 
 

which is equivalent to: 
 

a >>= (b >>= c) 
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We also use the try notation throughout the project code. In simple terms, try is a parser 

combinator that allows us to ‘roll back’ on previously consumed input when an error is 

encountered. This is important when checking an input string against a set of closely related 

but distinct parse rules. For instance, when parsing a string “howdy!” using two parsers 

checking for “hello” and “howdy” respectively, we don’t want the failure of the “hello” parser 

at the second character of “howdy” to keep the “h” is consumed, as this precludes the second 

parser from correctly identifying the target string. Using try lets us undo the consumption of 

input and avoid this problem.  

 Finally, it should be noted that Haskell’s status as a functional language means I/O is 

handled differently from languages like Python, Java, etc. (WikiHaskell, n.d.). For this reason, 

much of our testing was carried out in GHCi, an interpreter that comes with the Haskell platform 

(Haskell.org, n.d.). Our project code was then compiled and runs as a program that outputs 

.o/.hi object files. Users may run the program in GHCi to access individual functions, and 

to see the parse tree output visualized in the command line. 

 

4.4.2. Types 
 

As outlined in our grammar, the highest type in our controlled natural language is the contract. 

This carries over into our implementation code. Contracts are comprised of statements, which 

in turn contain varying combinations of other types. Statements can be (a) recursively 

constructed from other statements, (b) comprised of non-statement types, or (c) some 

combination of both. This modularity is reflected in our implementation code.  

All non-statement types are either expressions, predicates, or operators. Expressions 

accept integers, identifiers (defined here as non-reserved strings), operators, predicates, and 

other expressions as legal values. Note that in parse tree output, constructors name constituents. 

The set of expression constructors is extensive, and often recursively construct other 

expressions. This was necessary for all possible statements made of the CNL to be parsed.  

In introducing predicates in our grammar (4.1.4), we noted that vague quantifier and 

vague relation are implemented as predicates (Pred) and operators (Op) in our code. These are 

constructed through use of Infix and Prefix operations (see subsection 4.4.2). Predicates 

identify modifiers and determiners that alter the expression in which they are used. Operators 

are constituents that identify a relation between two or more parties, objects, etc. Figures 3-5 

below provide code snippets to illustrate this. 
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newtype Contract = Contract Stmt 
        deriving (Eq, Show) 
 
data Stmt = Deontic Expr 
          | Component Stmt Stmt 
          | Conditional Stmt Stmt  
          | DegreeVague Expr 
          | Disjunction Stmt Stmt 
          | Negation Stmt 
          | Conjunction Stmt Stmt 
          | Contingency Expr 
          | Time Expr Stmt 
          deriving (Eq, Show) 
 

Figure 3: Contract and Statement type definitions 

data Expr = Noun Id 
          | Num Integer 
          | USD Integer 
          | GBP Integer 
          | Past Op Expr Expr  
          | Future Op Expr Expr 
          | VagueRelation Op Expr Expr 
          | VagueQuantifier Pred Expr 
          | Predicate Pred Expr 
          | Verb Id 
          | Adjective Id 
          | Adverb Id 
          | Month Id 
          | Year Integer 
          | Day Integer 
          | Date Expr Expr Expr 
          | Description' Expr Expr Expr 
          | Description Expr Expr 
          | Inhibition Expr Expr 
          | Permission Expr Expr 
          | Obligation Expr Expr 
          | Quantity Expr Expr 
          deriving (Eq, Show) 
 

Figure 4: Expression type definition 
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4.4.3. Parsing 
 

Contracts are constructed using parser combinators. When an object written in the CNL is input 

to the parseContract method, a parse tree is generated. This is achieved via incremental calls 

to higher-order parser combinators, sub-parsers, and auxiliary functions. The highest functions 

are getcontract, statement, and statement’. getcontract sends input to statement, 

which demarcates its content into substrings by our designated separation character (the period 

symbol). As they are separated, substrings are sent as input to consecutive calls to another 

combinator, statement’, which identifies statement type according to criteria defined in its 

sub-parsers. At each step of contract parsing, sections of the original input are consumed, and 

constituents of the final parse tree are constructed. The particulars of those constituents are 

dependent on which parsing functions succeeded or failed.  

The constituent returned by statement’ is highly variable and dependant on the output 

of the combinator’s sub-parsers (and, in turn, the output(s) of their own sub-parsers). There are 

eight statement parsers, each of which either (a) test their input for the presence of 

reserved/reservedOp keywords, (b) pass all or parts of their input to other statement parsers 

to check for the presence of sub-statements, (c) pass all or parts of their input to expression 

parsers, the success or failure of which determine the success of the statement parser, or (d) do 

all of the above. Figures 6-8 below illustrate this. 

 

data Op = TemporalRange 
        | ObjectRange 
        | Payment 
        | Delivery 
        | Refund 
        | Event 
        deriving (Eq, Show) 
 
data Pred = Within 
        | After 
        | Before 
        | Minimum 
        | Maximum 
        | Approximation 
        deriving (Eq, Show) 
 

Figure 5: Operator and Predicate type definitions 



 57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If, for instance, a string fails upon all statement parsers before finally succeeding on timeStmt, 

the following process has occurred. First, part of its input has been successfully consumed by 

one of its lower expression parsers. Second, the remaining input has been recursively sent back 

to statement’, and in isolation succeeds on some test in the deonticStmt parser. 

parseContract :: String -> Contract 
parseContract str = 
    case parse parser' "" str of 
        Left e -> error $ show e 
        Right r -> r 
 
parser' :: Parser Contract 
parser' = whiteSpace >> getcontract 
 
getcontract :: Parser Contract 
getcontract = do 
    contract <- statement 
    return $ Contract contract 
     
 

Figure 6: Contract-building functions (1) 

statement' :: Parser Stmt 
statement' = try deonticStmt 
            <|> ifStmt 
            <|> disjunctionStmt 
            <|> conjunctionStmt 
            <|> negationStmt 
            <|> (try descriptionStmt 
            <|> contingentStmt) 
            <|> timeStmt 
            <|> entailmentStmt 
 

Figure 8: Statement parser 

statement :: Parser Stmt 
statement = do 
    components <- sepBy1 statement' (reserved ".")  
    if length components == 1 
        then return $ head components 
    else return $ foldr1 Component components 
 

Figure 7: Contract-building functions (2) 
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Both timeStmt and deonticStmt depend on the output of other expression parsers for the 

Expr values attached to their Stmt type outputs. getObligation, for instance, returns an 

Obligation constituent. Depending on which of its sub-parsers succeed, it also outputs 

specific combinations of other constituents. Nuances in input are caught by bespoke parser 

functions at this level. This ensures that the relative expressive freedom the CNL user has when 

specifying deontic structures (e.g., through use of vague modifiers, adjectives, etc.) is correctly 

reflected in the constituents of the parse tree. 

 

 

 

 

 

 

 

 

 

The binexpression operation and its associated helper functions utilize Parsec’s 

Text.ParserCombinators.Parsec.Expr module and its built-in operator constructors 

(specifically, Infix and Prefix). This streamlines the process of attaching user-defined identifier 

timeStmt :: Parser Stmt 
timeStmt = do 
    e <- (reserved "On" >> getdate) <|> try betweencheck <|> timePrefix <|> 
timePrefix' <|> timePrefix'' <|> tempredexpr 
    Time e <$> statement 
 

Figure 9: Temporal vague statement parser 

deonticStmt :: Parser Stmt 
deonticStmt = do 
    e <- try clauseExp <|> try getObligation 
    return $ Deontic e 
 

Figure 10: Deontic statement parser 

getObligation :: Parser Expr 
getobligation :: Parser Expr 
getobligation = do 
    e1 <- try binexpression     
    e2 <- try objrange <|> try vaguequantity <|> try getquantity <|> try 
predexpression <|> try getobjectdescription <|> compoundnounterm <|> 
binexpression  
    return $ Obligation e1 e2 
 

Figure 11: Obligation expression parser 
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variables to their associated constituents. Obligation expressions are modelled as binary 

relations between two parties; they are constructed with use of Infix operations, matching 

obligation (an Op type: Delivery, Refund, Payment) with its predicated tense (a Pred type: 

Future, Past).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The code snippets above illustrate how we implemented parsing for sentences in our CNL that 

contain both vague and deontic structures. A sentence that would successfully parse under rules 

outlined above is “Between January and February Duncan paid Jack $300”. This models 

relational vague structures. The keyword between binds the nouns ‘Duncan’ and ‘Jack’ in a 

deontic relation past payment, but one with tensed yet imprecise temporal aspects. A successful 

parse on this statement adds, among others, the constituent VagueRelation to the parse tree. 

binexpression :: Parser Expr 
binexpression = buildExpressionParser binoperators term 
 
term =  fmap Noun identifier 
        <|> fmap Num integer 
        <|> (symbol "$" >> fmap USD integer) 
        <|> (symbol "£" >> fmap GBP integer) 
        <|> parens binexpression 
 

Figure 12: Parsing binary obligation expressions (1) 

binoperators :: [[Operator Char st Expr]] 
 
binoperators = [ [ 
              Infix (reservedOp "will pay" >> return (Future Payment)) 
AssocNone, 
              Infix (reservedOp "paid"  >> return (Past Payment)) AssocNone, 
              Infix (reservedOp "will deliver to" >> return (Future Delivery)) 
AssocNone, 
              Infix (reservedOp "delivers" >> return (Future Delivery)) 
AssocNone, 
              Infix (reservedOp "delivered to"  >> return (Past Delivery)) 
AssocNone, 
              Infix (reservedOp "will refund" >> return (Future Refund)) 
AssocNone, 
              Infix (reservedOp "must refund" >> return (Future Refund)) 
AssocNone, 
              Infix (reservedOp "refunded" >> return (Past Refund)) AssocNone] 
] 
 
 
 

Figure 13: Parsing binary obligation expressions (2) 
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If the sentence were to be modified to include vague quantifiers (e.g., if the keyword 

approximately were inserted before dollar amount paid), the outer statement type would not 

change from Deontic, whose sub-parsers provide some flexibility when parsing different input 

string patterns. Rather than returning an error, an additional vague structure VagueQuantifier 

would become a constituent in the overall parse tree. This is necessary for correctness as our 

CNL allows for limited chaining of vagueness modifiers and expressions within a single 

sentence of the language. 

Vague language type have the property of multiple instantiation; that is, distinct lexical 

units in natural language can fall under a common vague category (e.g., ‘always’ and ‘before’ 

both instantiate quantificational vagueness). The design of our grammar reflects this, and the 

translation of multiple distinct input patterns to single common constituents in the final parse 

tree implements that in our code.  

 

4.4.4. Quantification 
 

When CNL input has been successfully parsed, post-hoc analysis is carried out to determine a 

vagueness score. A ratio value is also given as to the proportion of vague tokens to all tokens. 

The decision was made to quantify the parse tree rather than the input string. Our quantification 

method was based on our vagueness taxonomy. As such, the development process was 

streamlined by measuring encounter rates for the token types that instantiate our vagueness 

categories, rather than by counting particular strings that the lexer checks for when generating 

tokens. For a similar reason, the decision was made to convert the parse tree to a string for 

quantification, rather than use Parsec’s getState/putState functions. These functions would 

be useful for directly checking input for the number of occurrences of certain words held in 

state – but, given this had already been done during parsing itself, we felt it was not necessary 

here. Instead, the parse tree was checked for the presence of VagueQuantifier, 

VagueRelation, and Adjective/Adverb tokens. The latter pair instantiate degree vagueness 

directly – to avoid double counting, we did not check for the DegreeVague token that 

accompanies these tokens. 

 Both the scoring and ratio calculations rely heavily on function composition, the order 

of which will be explained here. First, we will explain the scoring function, assessment’. A 

parse tree is sent to the combinedScores function. This is composed of two other functions, 

splitTree and summation. splitTree takes the parse tree, converts it to a string, and splits 

it on white space into a list of strings. This list is then sent to summation.  
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Summation sends the list to quantScore, relScore and degScore. Each of these in turn call 

degcheck’, relcheck’, and qcheck’ on the list, replacing the strings inside the list with floats 

(0.25, 0.5, or 0.75 for strings that match the token type being checked for, and 0 for any other 

token). The members of this list of floats are then summed. 0 values are insignificant to the 

calculation and so not dropped at this point (but will be in our ratio calculation function). The 

sum value from each of the scoring functions is returned to summation and added together. 

The process is identical (save the specifics of the float list for each type), so for the sake of 

brevity we will illustrate with the quantificational vague scoring functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

assessment' :: String -> String 
assessment' x = printf "Score: %.2f" $ calculation $ combinedScores $ 
parseContract x 
 
combinedScores :: Contract -> Float 
combinedScores x = summation $ splitTree x 
 
splitTree :: Contract -> [String] 
splitTree x = words $ show x 
 
summation :: [String] -> Float 
summation x = quantScore x + relScore x + degScore x 
 

Figure 14: Scoring functions (1) 

quantScore :: [String] -> Float 
quantScore x = sum $ qcheck' x 
 
qcheck' :: [String] -> [Float] 
qcheck' x = quantValues x 
 
checkQuants :: String -> Float 
checkQuants n 
 | n == "(VagueQuantifier" = 0.5 
 | otherwise = 0 
 
quantValues :: [String] -> [Float] 
quantValues = map checkQuants 
 

Figure 15: Scoring functions (2) 
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Next, summation’s output is passed to combinedScores. This returns to the outermost 

function, assessment’, which applies calculation to it. calculation divides the float by 

10 and returns. The value returned is our quantification score. 

 

 

 

 

 

 

 

 

 

 

 

Calculation of ratio uses some common functions. splitTree is similarly called on the parse 

tree. When it returns its list of strings, the list is given as an argument to the freqCalc function. 

This in turn sends the list to the vagueCards and tokenCardinality functions.  

 

 

 

 

 

 

 

 

vagueCards sends the list to three further functions (getDegreeLength, getQuantLength, 

and getRelLength). These functions send the list to degcheck’, relcheck’, and qcheck’ to 

convert to a list of floats, then send the float list to dedicated functions for dropping zeroes. 

Lists that have been trimmed of zeroes are measured for length, returning an Int value for each 

category. Again, the process is mostly identical for each category so we will only illustrate with 

quantificational vague functions. tokenCardinality calls the totalTokens function on the 

list, returning an Int representing the total number of tokens. When vagueCards and 

tokenCardinality return to freqCalc, their Int values are converted to Float using 

fromIntegral. The ratio calculation is then performed. 

ghci> assessment' "between June and July Alex will deliver to John 
around 200 bikes. John will pay Alex at least $200" 
"Score: 0.18" 

Figure 17: Scoring a contract in GHCi 

ratio :: String -> String 
ratio x = printf "Ratio: %.2f" $ freqCalc $ splitTree $ parseContract x 
 
freqCalc :: [String] -> Float 
freqCalc x =  (fromIntegral $ vagueCards x) / (fromIntegral $ tokenCardinality 
x) 
 

Figure 18: Ratio calculation (1) 

calculation :: Float -> Float 
calculation x = x/10 
 

Figure 16: Final calculation of score 
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In GHCi, Float values with leading zeroes after their point are printed in scientific 

notation. It was judged that this might cause problems for the intended audience (i.e., legal 

professionals). For the sake of readability, the decision was made to use the printf function 

to format the scores to round to two decimal places. This formatting is maintained in the GHC 

compiled program (i.e., when run outside of GHCi).   

 

 

 

 

 

vagueCards :: [String] -> Int 
vagueCards x = getDegreeLength x + getQuantLength x + getRelLength x 
 
getQuantLength :: [String] -> Int 
getQuantLength x = quantLength $ dropQuants x 
 
dropQuants :: [String] -> [Float] 
dropQuants x = dropZeroesQ $ qcheck' x 
 
dropZeroesQ :: [Float] -> [Float] 
dropZeroesQ x = filter (==0.5) x 
 
quantLength :: [Float] -> Int 
quantLength qua 
 | qua == [] = 0 
 | otherwise = length qua 
 
tokenCardinality :: [String] -> Int 
tokenCardinality x = totalTokens x 
 
totalTokens :: [String] -> Int 
totalTokens comps  
 | comps == [] = 0 
 | otherwise = length comps 
 

Figure 19: Ratio calculation (2) 

ghci> ratio "between June and July Alex will deliver to John 
around 200 bikes. John will pay Alex at least $200" 
"Ratio: 0.08" 

Figure 20: Contract ratio in GHCi 
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4.4.5. Complete Example  
 

The code snippets and discussion above illustrate the general process by which statement 

parsers, expression parsers, and auxiliary functions combine to process CNL input and output 

abstract syntax trees. Extensive expression parsers and helper functions are used, most of which 

were not explored in this chapter but can be viewed in the appendix code. The following is a 

complete example of a short contract written in our natural language, the parse tree it outputs 

when given as input to our parsing code, and the score it returns when assessed by our 

quantification functions. 

 

 

 

 

 

 

 

 

 

As the input string is consumed by the parsing functions, constituents are added to the parse 

tree. Each constituent corresponds to a syntactical type in the grammar, and, as we have shown, 

is implemented through use of algebraic data types in the underlying Haskell code. The parse 

tree preserves certain aspects of the input, determined during the parsing process. These are 

attached to constituents. Constituents of this form derived from our input include (Noun 

"Alex") and (Year 2023). The outermost constituent in a branch of the parse tree 

corresponds to the statement type it represents in our grammar. So, for example, a deontic 

statement within our example (“John will refund Alex minimum $2500”) is represented in the 

parse tree as a relation between two nouns, with a vaguely quantified unit of currency as its 

object: (Component (Deontic (Obligation (Future Refund (Noun "John") (Noun 

"Alex")) (VagueQuantifier Minimum (USD 2500)))). The full parse tree is presented 

below. 

 

 

 

 

ghci> parseContract "On 23 June 2023 Alex paid John $3000. Within 
2024 John will deliver to Alex a computer. If delivery is late then 
John will pay Alex around $100. Between 2024 and 2026 the warranty 
is valid. If the computer breaks then before 2027 Alex has 
permission to complain. If Alex will complain then either John 
delivers Alex a new computer or John will refund Alex minimum $2500. 
In 2027 the warranty will expire. If the warranty is expired then 
Alex may not complain" 
 
 

Figure 21: CNL input in GHCi 
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As mentioned in the introduction to this subsection (4.4.1), Haskell programs have particular 

IO requirements. We will not go into the details of why that is the case here. We will however 

give an illustration of the main function in the project code that allows end users to enter input 

that is sent to our parsing and quantification functions for processing, and that returns a parse 

tree as program output. 

 

 

 

 

 

 

 

 

 

 

 

The following is output of our example contract, having being run in the compiled program at 

the command line interface. This outputs .o and .hi files in the folder where the compiled 

program is stored. 

Contract (Time (Date (Day 23) (Month "June") (Year 2023)) (Component (Deontic 
(Obligation (Past Payment (Noun "Alex") (Noun "John")) (USD 3000))) (Time 
(VagueQuantifier Within (Year 2024)) (Component (Deontic (Obligation (Future 
Delivery (Noun "John") (Noun "Alex")) (Noun "computer"))) (Conditional 
(DegreeVague (Description (Noun "delivery") (Adjective "late"))) (Component 
(Deontic (Obligation (Future Payment (Noun "John") (Noun "Alex")) (VagueQuantifier 
Approximation (USD 100)))) (Time (VagueRelation TemporalRange (Year 2024) (Year 
2026)) (Component (DegreeVague (Description (Noun "warranty") (Adjective 
"valid"))) (Conditional (Contingency (Future Event (Noun "computer") (Verb 
"breaks"))) (Time (VagueQuantifier Before (Year 2027)) (Component (Deontic 
(Permission (Noun "Alex") (Verb "complain"))) (Conditional (Contingency (Future 
Event (Noun "Alex") (Verb "complain"))) (Disjunction (Deontic (Obligation (Future 
Delivery (Noun "John") (Noun "Alex")) (Description (Adjective "new") (Noun 
"computer")))) (Component (Deontic (Obligation (Future Refund (Noun "John") (Noun 
"Alex")) (VagueQuantifier Minimum (USD 2500)))) (Time (VagueQuantifier Within 
(Year 2027)) (Component (Contingency (Future Event (Noun "warranty") (Verb 
"expire"))) (Conditional (DegreeVague (Description (Noun "warranty") (Adjective 
"expired"))) (Deontic (Inhibition (Noun "Alex") (Verb 
"complain")))))))))))))))))))) 
 

Figure 22: Parse tree output (visualization) 

main :: IO Contract 
main = do 
    putStrLn "Enter a contract." 
    con <- getLine 
    let contract = parseContract con 
    let score = assessment' con 
    let rate = ratio con 
    putStrLn score 
    putStrLn rate 
    return contract 
 

Figure 23: Main function 
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./Parser 
Enter a contract. 
On 23 June 2023 Alex paid John $3000. Within 2024 John will 
deliver to Alex a computer. If delivery is late then John will pay 
Alex around $100. Between 2024 and 2026 the warranty is valid. If 
the computer breaks then before 2027 Alex has permission to 
complain. If Alex will complain then either John delivers Alex a 
new computer or John will refund Alex minimum $2500. In 2027 the 
warranty will expire. If the warranty is expired then Alex may not 
complain 
Score: 0.42 
Ratio: 0.07 
 

Figure 24: Program running 
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5. Conclusion 
 
Revisiting the project aims and objectives as outlined in chapter 1, we can point to how each 

was met and where. The requirements of the project were fourfold (research, design, 

implementation, quantification), and have been met. The research and development processes 

that were carried out in meeting them have been chronicled throughout the paper. 

The project’s primary requirement was the development of a controlled natural 

language for use in the commercial law sector, designed to enable the expression of vague 

language structures. To ensure our language was relevant to its proposed use case, a review of 

legal scholarship on the question of vagueness in law was carried out. Further, examples of 

real-world commercial litigation were analysed and used to directly inform the design process 

of the language. The results of this review were presented and analysed in chapter 2.  

To optimize the design of our language and to inform the implementation process, an 

analysis of vagueness as a linguistic phenomenon was required. A review of literature on 

vagueness in formal semantics, philosophy and logic was carried out. From this, a taxonomy 

of vague types was developed, forming the basis of our controlled natural language and its 

implementation. This was carried out in chapter 3.  

  The findings resulting from the research period of the project heavily influenced the 

design of the controlled natural language. The grammar was introduced, explained, and 

systematized into Backus-Naur Form in chapter 4.  

The other primary requirement of the project was the development of mechanisms to 

analyse an object written in our controlled natural language, to detect vague structures within 

it, and to preserve these structures upon translation of that object to another format. This was 

implemented with the development of code to parse input and generate abstract syntax trees. 

Project code was written in Haskell and using its Parsec library, as was also outlined in chapter 

4. 

Quantification mechanisms required for analysis of legal contracts drafted in the CNL were 

also a primary requirement of the project. These were similarly introduced, formalized, and 

illustrated in chapter 4.  
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Appendix  
 

import Control.Monad 
import Text.Parsec.Language ( emptyDef ) 
import Text.ParserCombinators.Parsec 
    ( char, 
      letter, 
      string, 
      alphaNum, 
      sepBy1, 
      (<|>), 
      many, 
      parse, 
      try, 
      Parser, anyChar, oneOf ) 
import Text.ParserCombinators.Parsec.Expr 
    ( buildExpressionParser, 
      Assoc(AssocNone), 
      Operator(Prefix, Infix) ) 
import Text.ParserCombinators.Parsec.Language ( emptyDef ) 
import qualified Text.ParserCombinators.Parsec.Token as Token 
import Control.Monad.State as S 
    ( MonadTrans(lift), modify, execState, State ) 
import Text.Parsec (ParsecT, runParserT, runParser, string, getState, putState, 
noneOf) 
import Data.Typeable 
import Data.Text (splitOn) 
import Text.Printf 
 
---------- algebraic data types implementing grammar 
data Op = TemporalRange 
        | ObjectRange 
        | Payment 
        | Delivery 
        | Refund 
        | Event 
        deriving (Eq, Show) 
 
data Pred = Within 
        | After 
        | Before 
        | Minimum 
        | Maximum 
        | Approximation 
        deriving (Eq, Show) 
 
data Expr = Noun Id 
          | Num Integer 
          | USD Integer 
          | GBP Integer 
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          | Past Op Expr Expr  
          | Future Op Expr Expr 
          | VagueRelation Op Expr Expr 
          | VagueQuantifier Pred Expr 
          | Predicate Pred Expr 
          | Verb Id 
          | Adjective Id 
          | Adverb Id 
          | Month Id 
          | Year Integer 
          | Day Integer 
          | Date Expr Expr Expr 
          | Description' Expr Expr Expr 
          | Description Expr Expr 
          | Inhibition Expr Expr 
          | Permission Expr Expr 
          | Obligation Expr Expr 
          | Quantity Expr Expr 
          deriving (Eq, Show) 
 
data Stmt = Deontic Expr 
          | Component Stmt Stmt 
          | Conditional Stmt Stmt  
          | DegreeVague Expr 
          | Disjunction Stmt Stmt 
          | Negation Stmt 
          | Conjunction Stmt Stmt 
          | Contingency Expr 
          | Time Expr Stmt 
          deriving (Eq, Show) 
 
newtype Contract = Contract Stmt 
        deriving (Eq, Show) 
 
type Id = String -- used as shorthand for strings when using lexing functions 
 
--------------- language definition--------------- 
languageDef = 
     emptyDef    { Token.commentStart    = "" 
                 , Token.commentEnd      = "" 
                 , Token.commentLine     = "" 
                 , Token.nestedComments  = False 
                 , Token.caseSensitive   = False 
                 , Token.identStart      = letter 
                 , Token.identLetter     = alphaNum 
                 , Token.reservedNames   = [  "." 
                                           , "if" 
                                           , "then" 
                                           , "else" 
                                           , "," 
                                           , "between" 
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                                           , "either" 
                                           , "is" 
                                           , "is a" 
                                           , "has permission to" 
                                           , "may not" 
                                           , "between" 
                                           , "on" 
                                           , "or" 
                                           , "and" 
                                           ,"it is the case that" 
                                           , "it is not the case that" 
                                           , "the" 
                                           , "will" 
                                           , "within" 
                                           , "after" 
                                           , "before" 
                                           , "in" 
                                           ] 
                 , Token.reservedOpNames = [ "will pay" 
                                           , "paid" 
                                           , "will deliver to" 
                                           , "delivers" 
                                           , "delivered to" 
                                           , "will refund" 
                                           , "must refund" 
                                           , "refunded" 
                                           , "minimum" 
                                           , "maximum" 
                                           , "approximately" 
                                           , "around" 
                                           ] 
                } 
 
-------------lexing functions----- 
lexer = Token.makeTokenParser languageDef 
 
identifier = Token.identifier lexer 
reserved   = Token.reserved   lexer 
reservedOp = Token.reservedOp lexer 
semi       = Token.semi       lexer 
parens     = Token.parens     lexer 
integer    = Token.integer    lexer 
whiteSpace = Token.whiteSpace lexer 
symbol = Token.symbol lexer 
 

 

ifStmt :: Parser Stmt 
ifStmt = do 
   reserved "If" 
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   s1 <- statement 
   reserved "then" 
   Conditional s1 <$> statement 
 
deonticStmt :: Parser Stmt 
deonticStmt = do 
    e <- try clauseExp <|> try getobligation 
    return $ Deontic e 
 
timeStmt :: Parser Stmt 
timeStmt = do 
    e <- (reserved "On" >> getdate) <|> try betweencheck <|> timePrefix <|> 
timePrefix' <|> timePrefix'' <|> tempredexpr 
    Time e <$> statement 
 
disjunctionStmt :: Parser Stmt 
disjunctionStmt = do 
   reserved "Either" 
   s1 <- statement 
   reserved "or" 
   Disjunction s1 <$> statement 
 
negationStmt :: Parser Stmt 
negationStmt = do  
   reserved "It is not the case that" 
   Negation <$> statement 
 
descriptionStmt :: Parser Stmt 
descriptionStmt = do 
    e1 <- (reserved "The" >> (try moddescription <|> try simpledescription)) <|> 
try moddescription <|> try simpledescription 
    return $ DegreeVague e1 
 
contingentStmt :: Parser Stmt 
contingentStmt = do 
    e <- (reserved "The" >> (try makeFuture <|> try makeFuture')) <|> try 
makeFuture <|> try makeFuture' 
    return $ Contingency e 
 
conjunctionStmt :: Parser Stmt 
conjunctionStmt = do 
   reserved "It is the case that" 
   s1 <- statement 
   reserved "and" 
   Conjunction s1 <$> statement 
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statement :: Parser Stmt 
statement = do 
    components <- sepBy1 statement' (reserved ".")  
    if length components == 1 
        then return $ head components 
    else return $ foldr1 Component components 
 
getcontract :: Parser Contract 
getcontract = do 
    contract <- statement 
    return $ Contract contract 
 
-----------highest statement parser----------- 
statement' :: Parser Stmt 
statement' = try deonticStmt 
            <|> ifStmt 
            <|> disjunctionStmt 
            <|> conjunctionStmt 
            <|> negationStmt 
            <|> (try descriptionStmt 
            <|> contingentStmt) 
            <|> timeStmt 
 
----- expression building functions------- 
binexpression :: Parser Expr 
binexpression = buildExpressionParser binoperators term 
 
term =  fmap Noun identifier 
        <|> fmap Num integer 
        <|> (symbol "$" >> fmap USD integer) 
        <|> (symbol "£" >> fmap GBP integer) 
        <|> parens binexpression 
 
--- infix operations for binary relationships (deontic) 
         
binoperators :: [[Operator Char st Expr]] 
 
binoperators = [ [ 
              Infix (reservedOp "will pay" >> return (Future Payment)) AssocNone, 
              Infix (reservedOp "paid"  >> return (Past Payment)) AssocNone, 
              Infix (reservedOp "will deliver to" >> return (Future Delivery)) 
AssocNone, 
              Infix (reservedOp "delivers" >> return (Future Delivery)) AssocNone, 
              Infix (reservedOp "delivered to"  >> return (Past Delivery)) 
AssocNone, 
              Infix (reservedOp "will refund" >> return (Future Refund)) AssocNone, 
              Infix (reservedOp "must refund" >> return (Future Refund)) AssocNone, 
              Infix (reservedOp "refunded" >> return (Past Refund)) AssocNone] ] 
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-- check for inhibition and permission patterns 
clauseExp :: Parser Expr 
clauseExp = do 
    e <- try inhibition <|> try permission 
    return e 
 
-- non-vague quantification of objects 
getquantity :: Parser Expr 
getquantity = do 
    e1 <- predints          -- quantity 
    e2 <- term              -- object 
    return $ Quantity e1 e2 
 
-- this is called when vague quantification of objects is detected in a deontic 
statement 
vaguequantity :: Parser Expr 
vaguequantity = do 
    e1 <- predexpression  -- approximately/etc 
    e2 <- term     -- integer 
    return $ Quantity e1 e2 
 
--- used when we want to ignore determiners in a description  
compoundnounterm = (string "a " >> fmap Noun identifier) 
        <|> (reserved "the " >> fmap Noun identifier) 
        <|> fmap Noun identifier 
 
-- description in a deontic statement 
getobjectdescription :: Parser Expr 
getobjectdescription = do 
    (string "a ") <|> (string "the ") 
    e1 <- adjterm 
    e2 <- term 
    return $ Description e1 e2 
 
-- used when parsing a non-deontic statement with a verb e.g. contingency 
verbterm = fmap Verb identifier 
 
-- used for contingency expressions, future tense actions 
makeFuture' :: Parser Expr 
makeFuture' = do 
    e1 <- term --noun 
    e2 <- verbterm -- verb 
    return $ Future Event e1 e2 
 
makeFuture :: Parser Expr 
makeFuture = do 
    e1 <- compoundnounterm -- noun 
    reserved "will" 
    e2 <- verbterm -- verb 
    return $ Future Event e1 e2 
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-- used when building expressions with vague quantification 
predexpression :: Parser Expr 
predexpression = buildExpressionParser predicates predterm  
 
-- currency or number 
predterm = predints 
 
predints = (symbol "$" >> fmap USD integer) 
        <|> (symbol "£" >> fmap GBP integer) 
        <|> fmap Num integer 
 
------ used for constructing vague quantifying expressions 
predicates :: [[Operator Char st Expr]] 
 
predicates = [[ Prefix (reservedOp "approximately" >> return (VagueQuantifier 
Approximation)), 
                Prefix (reservedOp "around" >> return (VagueQuantifier 
Approximation)), 
                Prefix (reservedOp "minimum" >> return (VagueQuantifier Minimum)), 
                Prefix (reservedOp "maximum" >> return (VagueQuantifier Maximum)), 
                Prefix (reservedOp "at least" >> return (VagueQuantifier Minimum)), 
                Prefix (reservedOp "at most" >> return (VagueQuantifier Maximum)), 
                Prefix (reservedOp "within" >> return (VagueQuantifier Within)), 
                Prefix (reservedOp "after" >> return (VagueQuantifier After)), 
                Prefix (reservedOp "before" >> return (VagueQuantifier Before))  
                ]] 
 
-- used in temporalrange  
predtempterm = fmap Month identifier <|> fmap Year integer 
 
--- modified description i.e. one with an adverb 
moddescription :: Parser Expr 
moddescription = do 
    e <- term 
    reserved "is" 
    e1 <- adverbterm 
    e2 <- adjterm 
    return $ Description' e e1 e2 
 
--- non-adverb adjectival expression 
simpledescription :: Parser Expr 
simpledescription = do 
    e <- term 
    reserved "is" 
    e2 <- adjterm 
    return $ Description e e2 
 
--- specific fmap fucntions for degree vague instantiation 
adjterm :: Parser Expr 
adjterm = fmap Adjective identifier 
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adverbterm :: Parser Expr 
adverbterm = fmap Adverb identifier 
 
-- deontic methods 
 
----- gets specifics for an obligation statement, i.e. quantity, presence of vague 
modifiers, etc 
getobligation :: Parser Expr 
getobligation = do 
    e1 <- try binexpression    -- subjects + relation 
    e2 <- try objrange <|> try vaguequantity <|> try getquantity <|> try 
predexpression <|> try getobjectdescription <|> compoundnounterm <|> binexpression 
-- object(s) 
    return $ Obligation e1 e2 
 
--- parses an inhibition deontic statement 
inhibition :: Parser Expr 
inhibition = do  
   e1 <- term 
   reserved "may not" 
   Inhibition e1 <$> verbterm 
 
-- parses a permission deontic statement 
permission :: Parser Expr 
permission = do  
   e1 <- term 
   reserved "has permission to" 
   Permission e1 <$> verbterm 
 
-- temporal fmap parsing functions based on context pattern 
---------- 
dayterm :: Parser Expr 
dayterm = fmap Day integer 
monthterm :: Parser Expr 
monthterm = fmap Month identifier 
yearterm :: Parser Expr 
yearterm = fmap Year integer 
 
--- temp terms - slight differences based on usage 
tempterm = monthterm <|> yearterm 
tempexpr = buildExpressionParser binoperators tempterm 
tempredexpr = buildExpressionParser predicates tempterm 
 
getdate :: Parser Expr 
getdate = do 
   e1 <- dayterm 
   e2 <- monthterm 
   Date e1 e2 <$> yearterm 
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---- check for temporal range 
betweencheck :: Parser Expr 
betweencheck = do 
    reserved "Between" 
    e1 <- tempterm 
    reserved "and" 
    e2 <- tempterm 
    return $ VagueRelation TemporalRange e1 e2 
 
------ checks for temporal quant------- 
timePrefix :: Parser Expr 
timePrefix = do 
    reserved "Before" 
    e <- tempterm 
    return $ VagueQuantifier Before e 
 
timePrefix' :: Parser Expr 
timePrefix' = do 
    reserved "Within" <|> reserved "In" 
    e <- tempterm 
    return $ VagueQuantifier Within e 
 
timePrefix'' :: Parser Expr 
timePrefix'' = do 
    reserved "After" 
    e <- tempterm 
    return $ VagueQuantifier After e 
 
-- used for 'between x and y' relations of quantity. should be used for currency 
objrange :: Parser Expr 
objrange = do 
    reserved "Between" 
    e1 <- predints 
    reserved "and" 
    e2 <- predints 
   -- e3 <- term 
    return $ VagueRelation ObjectRange e1 e2 --  
 
---------- functions for quantifying vagueness ------ 
-- takes string copy of parse tree, applies each quantification test, sums up 
summation :: [String] -> Float 
summation x = quantScore x + relScore x + degScore x 
 
-- creates a string copy of parse tree 
splitTree :: Contract -> [String] 
splitTree x = words $ show x 
 
-- higher function for splitTree and summation 
combinedScores :: Contract -> Float 
combinedScores x = summation $ splitTree x 
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-- get a vagueness score between 0,1  
calculation :: Float -> Float 
calculation x = x/10 
 
-- input is a string written in rules of CNL, output is a score 
assessment :: String -> Float 
assessment x = calculation $ combinedScores $ parseContract x 
     
-- functions to calculate scores 
----- scores quant tokens 
quantScore :: [String] -> Float 
quantScore x = sum $ qcheck' x 
 
qcheck' :: [String] -> [Float] 
qcheck' x = quantValues x 
 
--- scores rel tokens 
relScore :: [String] -> Float 
relScore x = sum $ relcheck' x 
 
relcheck' :: [String] -> [Float] 
relcheck' x = relationalValues x 
 
---- Degree Vague 
-- scores degree tokens 
degScore :: [String] -> Float 
degScore x = sum $ degcheck' x 
 
degcheck' :: [String] -> [Float] 
degcheck' x = degreeValues x 
 
--- Vague Quantifiers 
--- turns tokens into numbers 
checkQuants :: String -> Float 
checkQuants n 
 | n == "(VagueQuantifier" = 0.5 
 | otherwise = 0 
 
quantValues :: [String] -> [Float] 
quantValues = map checkQuants 
 
---- Vague Relations 
-- turns tokens to numbers 
checkRelations :: String -> Float 
checkRelations n 
 | n == "(VagueRelation" = 0.75 
 | otherwise = 0 
 
relationalValues :: [String] -> [Float] 
relationalValues = map checkRelations 
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---- Degree Vague 
-- tokens to numbers 
checkDegree :: String -> Float 
checkDegree n 
 | n == "(Adverb" = 0.25 
 | n == "(Adjective" = 0.25 
 | otherwise = 0 
 
degreeValues :: [String] -> [Float] 
degreeValues = map checkDegree 
 
--- measures ast string for length 
totalTokens :: [String] -> Int 
totalTokens comps  
 | comps == [] = 0 
 | otherwise = length comps 
 
--- apply these to list with zeroes dropped 
degreeLength :: [Float] -> Int 
degreeLength deg 
 | deg == [] = 0 
 | otherwise = length deg 
 
relLength :: [Float] -> Int 
relLength rel 
 | rel == [] = 0 
 | otherwise = length rel 
 
quantLength :: [Float] -> Int 
quantLength qua 
 | qua == [] = 0 
 | otherwise = length qua 
 
-- use this if you want to get only the total number of tokens when parsing 
directtokenCard :: String -> Int 
directtokenCard x = totalTokens $ splitTree $ parseContract x 
 
--drop for quants. gets rid of zeroes for cardinality 
dropZeroesQ :: [Float] -> [Float] 
dropZeroesQ x = filter (==0.5) x 
 
-- drop for degrees 
dropZeroesD :: [Float] -> [Float] 
dropZeroesD x = filter (==0.25) x 
 
-- drop for relationals 
dropZeroesR :: [Float] -> [Float] 
dropZeroesR x = filter (==0.75) x 
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-- on list of token strings, returns weightings as a list and drops zeroes from it 
dropQuants :: [String] -> [Float] 
dropQuants x = dropZeroesQ $ qcheck' x 
 
dropDegree :: [String] -> [Float] 
dropDegree x = dropZeroesD $ degcheck' x 
 
dropRel :: [String] -> [Float] 
dropRel x = dropZeroesR $ relcheck' x 
 
------ cardinalities 
getDegreeLength :: [String] -> Int 
getDegreeLength x = degreeLength $ dropDegree x 
 
getQuantLength :: [String] -> Int 
getQuantLength x = quantLength $ dropQuants x 
 
getRelLength :: [String] -> Int 
getRelLength x = relLength $ dropRel x 
 
-- getting cardinalities for ratio calculation 
vagueCards :: [String] -> Int 
vagueCards x = getDegreeLength x + getQuantLength x + getRelLength x 
 
tokenCardinality :: [String] -> Int 
tokenCardinality x = totalTokens x 
 
----- calculates the total ratio of vague tokens to all tokens 
freqCalc :: [String] -> Float 
freqCalc x =  (fromIntegral $ vagueCards x) / (fromIntegral $ tokenCardinality x) 
 
-- for total ratio - this uses printf to display a rounded up 2 decimal place 
string message 
ratio :: String -> String 
ratio x = printf "Ratio: %.2f" $ freqCalc $ splitTree $ parseContract x 
 
--this prints ratio in scientific notation if leading number is zero after decimal 
point 
ratio' :: String -> Float 
ratio' x = freqCalc $ splitTree $ parseContract x 
 
-- for total score - this uses printf to display a rounded up 2 decimal place 
string message 
assessment' :: String -> String 
assessment' x = printf "Score: %.2f" $ calculation $ combinedScores $ parseContract 
x 
 
---- ignores white space and sends all else to getcontract for parsing 
parser' :: Parser Contract 
parser' = whiteSpace >> getcontract 
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----- function on a string, generates a parse tree 
parseContract :: String -> Contract 
parseContract str = 
    case parse parser' "" str of 
        Left e -> error $ show e 
        Right r -> r 
 
main :: IO Contract 
main = do 
    putStrLn "Enter a contract." 
    con <- getLine 
    let contract = parseContract con 
    let score = assessment' con 
    let rate = ratio con 
    putStrLn score 
    putStrLn rate 
    return contract 
 


