
University College London

Department of Computer Science

A thesis submitted in partial fulfilment of the requirements for

the degree of Master of Science in Computational

Finance/Financial Risk Management, University College London

Smart Confirmation Contracts: An
Architecture for ISDA Smart

Contracts

Author

Finn Casey Fierro

Academic Supervisor

Professor Christopher Clack

Department of Computer

Science

University College London

Industrial Supervisor

Mr Ciarán McGonagle

Legal Department

International Swaps and

Derivatives Association

September 11, 2023

This dissertation is submitted as part requirement for the MSc Computational Finance

degree at UCL. It is substantially the result of my own work except where explicitly

indicated in the text. The report may be freely copied and distributed provided the

source is explicitly acknowledged.

Abstract

This thesis presents an in–depth exploration and proposition for a comprehensive platform

that accommodates the production, interaction, and usage of legal Smart Contracts for

Ethereum Virtual machine–compatible blockchains, with particular attention to financial

derivatives. I examine the complex interplay between legal provisions, computational pro-

cedures, and financial applications within Over–The–Counter (OTC) derivatives, utilizing

the frameworks from the International Swaps and Derivatives Association (ISDA). I advo-

cate for a re–engineering of ISDA’s contractual architecture through the deployment of a

‘Smart Confirmation Contract System’. This system employs modular ‘Type Module’ and

‘Logic Module’ Smart Contracts to facilitate the creation of Non–Deliverable Forwards,

as well as Call and Put options. The restructured design is in alignment with the ISDA

Common Domain Model’s data schema and Digital Asset Definitions.

i

Acknowledgments

The completion of this thesis would not have been possible without the constant support

and guidance of several individuals and institutions. I would like to express my sincere

gratitude to my advisor, Professor Christopher Clack, for his expertise, insightful feedback,

and patience throughout the process of completion.

I extend my gratitude to the International Swaps and Derivatives Association (ISDA)

for their expertise that have significantly enriched this study. Special acknowledgement is

due to Ciarán McGonagle, whose extensive guidance and collaboration have been instru-

mental in improving the rigour, relevance, and depth of this research. Additional thanks

go to Mark New and Ian Sloyan for their contributions.

My colleagues and peers have played a key role in the stimulating academic atmosphere.

Their constructive criticism, discussions, and encouragement have been integral to my

growth. In this regard, I would like to thank Simon Klaus, Louis Kampman and Thekla

Ioannou for their help.

Lastly, I wish to acknowledge the enduring support of my family. Their consistent

encouragement has been foundational in the completion of this work.

ii

Contents

1 Introduction 1

2 Background 3

2.1 Blockchains . 3

2.2 Smart Contracts . 5

2.3 Ethereum Request for Comment Standards 9

2.3.1 Development and Approval Process 9

2.3.2 Notable ERC Standards . 9

2.3.3 Ongoing Innovations . 10

2.4 Oracles . 10

2.5 The Philosophy of Decentralised Consensus 11

2.6 Legal Status of Smart Contracts . 12

2.7 The Internal and External Model Of Smart Legal Contracts 14

2.7.1 External Model . 14

2.7.2 Internal Model . 14

2.8 Smart Derivative Contracts . 15

2.9 International Swaps and Derivatives Association 17

2.9.1 The ISDA Master Agreement . 17

2.9.2 ISDA Common Domain Model . 19

2.10 ISDA Digital Asset Definitions . 20

2.10.1 Smart Contract Templates . 21

3 Methodology 22

3.1 The Smart Confirmation Contract . 22

3.1.1 Translating the Common Domain Model into Solidity 25

3.1.2 Modularisation of the CDM . 26

3.1.3 Conditioning of the Confirmation Smart Contract with the Common

Domain Model . 28

3.1.4 The Logic Module: A Singleton Standardised Agnostic Logic Smart

Contract . 28

3.1.5 Four Section Standardisation of Logic Module Smart Contracts . . . 31

iii

3.1.6 Representing A Derivative Lifecycle As Stacks of Logic Modules . . 33

3.1.7 Building and Bridging CDM Functions to Digital Asset Definition

Logic Modules . 35

3.2 First and Second Order Periphery . 37

3.3 An Ecosystem of Smart Confirmation Contract Derivatives 37

4 Results, Caveats, and Discussion 41

4.1 Problematic CDM translation . 41

4.1.1 Enumeration Too Large . 41

4.1.2 Recursive Type Structure . 42

4.1.3 Addition of Non–Rosetta Types . 43

4.1.4 Storage Inefficiency in CDM and its Impact on Smart Derivatives

Contracts . 43

4.2 Stabilizing Cash Settlement Amounts in EVM Smart Contracts 44

4.3 Architecture of a Comprehensive Decentralised Web Application for Smart

Confirmation Contracts . 45

4.3.1 User Interface: Contract Template Selection and Customization . . . 45

4.3.2 User Interface: ISDA–Compliant Input Form 46

4.3.3 Smart Contract Compilation and Transaction Initiation 46

4.3.4 Contract Monitoring . 46

4.3.5 Contract Interaction . 46

4.3.6 Event History and User Interactivity 47

4.3.7 AI–Powered Query Handling . 47

4.4 Areas for Enhancement . 47

4.4.1 Optimization of Time–series Retrieval 47

4.4.2 Event–based Data Retrieval Constraints 47

4.4.3 Considerations for Natural Language Contract Storage 52

4.4.4 General Improvements and Trustworthiness 52

5 Conclusion 53

5.1 Summary of Key Findings . 53

5.2 Theoretical and Practical Implications . 53

5.2.1 Theoretical Implications . 53

5.2.2 Practical Implications . 54

5.3 Limitations and Caveats . 54

5.4 Regulatory and Policy Implications . 54

5.5 Final Remarks . 55

iv

Appendix A code 56

A.1 Code listing . 56

A.2 Project Summary . 56

Bibliography 56

v

Chapter 1

Introduction

Often enduring over extended periods of time and involving substantial sums, Over–The–

Counter (OTC) Smart Derivative Contracts necessitate a multidisciplinary approach that

brings together Law, Computer Science, and Finance. This intersection of disciplines

is essential for ensuring robust protective measures for all parties involved. Standardized

legal documentation and a shared understanding of transactional procedures facilitate this

protection. Crucially, achieving consensus at every level — be that technical within the

Smart Contract Code — or qualitative in the natural language contract, is indispensable

for each agreement.

The International Swaps and Derivatives Association’s (ISDA) Master Agreement

(MA) [1] plays an instrumental role in standardising natural language derivative con-

tracts. Written in 1985, and updated in 1992 and 2002, It carefully delineates the terms

and conditions applicable to all transactions between parties, thereby offering protection

to both sides from many aspects of counter–party risk. The MA extends to consider sce-

narios involving early termination and the ensuing calculations of amounts due in such

events. Given the degree of its both flexible and comprehensive nature, and its precedent

in managing complex provisions like that of netting obligations into a single obligation

— a feature extensively used in the aftermath of the 2008 financial crisis [2]. It is widely

regarded as the legal keystone underpinning contemporary OTC derivatives trading.

However, a comprehensive integration and consideration of the recent advancements in

blockchain technology remain unaccomplished within financial law [3]. Indeed, blockchain–

managed transactions have the potential to reduce transaction fees, automate the settle-

ment of trades, provide direct custodianship and bring transparency to payment flows —

improving financial transactions from their initiation to the long–term audits at the end

of their life cycle. With consideration of such innovations, the recent implementation of

the standard–based representation of events, actions and variable names present in ISDA

Common Domain Model [4] provides a strong framework for how market participants

should consistently agree upon trade details. Being technology–agnostic, it seeks to make

1

the initial step into synchronizing the technicalities required in financial derivative con-

tracts. It is thus a sensical precursor to a Smart contract–based platform emerging in

financial systems.

As I shall explore, accomplishing this integration is a task neither trivial nor straight-

forward. Aside from how each contract is designed, one must consider the relative benefits

to each blockchain, its architecture, the degree to which automation is possible on each

(as I find in Chapter 4, the Ethereum Virtual Machine is limited), the current ecosystem

present within it, and the ease of writing and the ease of interfacing and reading the code

semantic structure. The process of developing a Smart Contract is thereby case–by–case

dependent on the machine it runs on, with its context splitting itself from a ‘one–size–fits–

all’ structure. The ‘four corners’ of the Smart Contract have a great deal of variability

that, if desired, could be standardisation at either the Smart Contract Code level or that

of a higher controlled natural language level (which would be interpreted and fed through

to different Smart contract distributions).

In collaboration with ISDA, the following research consists of proposing a new archi-

tecture and a comprehensive platform for the production, interaction and use of Smart

Legal Contracts on the Ethereum blockchain. I develop a Non–Deliverable Forward, Call

and Put contracts, in alignment with the ISDA Common Domain Model’s data structures,

and following the logic and events put forth in the ISDA Digital Assets Definitions. I con-

tinue to produce a graphical interface of the entire contract process, accessible by each

of the contract’s parties. The interface displays when events are emitted, alongside live

updates of price derived from the relevant price oracle Chainlink.com [5]. No traditional

database is utilized, and the web application is only dependent upon the client having

access to an RPC provider [6]. By using a contract ‘factory’ one can access any contract

produced in the platform’s history, in perpetuity. The user interface aligns with the vi-

sual language of traditional financial contracts, to help bridge financial practitioners into

using blockchain technology. I propose that Smart Contract templates are constructed

by a hub–and–spoke structure, with a ‘Confirmation’ Smart Contract central to many

pre–deployed ‘Logic Module’ Smart Contracts. Each entire agreement can thus be repre-

sented by ‘stacks’ of Logic Module contracts — wrapped in their own legally enforceable

natural language clauses and provisions — with references to overarching natural language

contracts.

I further explore the limitations of producing Smart Legal Contracts on the Ethereum

blockchain — mainly, the inability for contracts to self–execute, and the need for external

agents to ‘fix’ payoffs upon valuation dates. The lack of financial feasibility of storing full

natural language documents, large Smart Contracts, or a large number of nested structures

are present issues I find non–ideal solutions for. I explore and propose off–chain solutions,

their caveats and improvements. This paper thus aims to produce a full model for how a

Web3 Smart Legal Contract ecosystem could exist within the present state of Ethereum.

2

Chapter 2

Background

The following section explores the context for my research, including a section describ-

ing the mechanisms of blockchains, a section describing the current academic zeitgeist

surrounding Legal Smart Contracts, and a section exploring the current ISDA agreement

framework.

2.1 Blockchains

Blockchains were first invented to produce a digital currency for the Internet. Indeed,

the 1980s and 1990s yielded the initial digital currency attempts, with David Chaum’s

‘DigiCash’ [7], being a seminal implementation that used a cryptographic algorithm known

as Chaumian Blinding. Contrary to the now–used hashing, Chaumian Blinding involved

hiding the serial number of a digital currency using a cryptographic algorithm called

‘blinding’ — which involved mixing a serial number with a fixed amount of random data.

The user would send such a ‘blinded’ coin to the bank, which would, without being able

to see the serial number, digitally sign it. After signing, the user removed the random

data, ‘unblinding’ and leaving them with a digital coin that had a unique serial number

with the bank’s signature.

The process ensured anonymity as the bank could not link the signed coin to a partic-

ular user. When the coin was later spent and deposited back into the bank by a merchant,

the bank could verify its signature and check the serial number to ensure that the coin

had not been spent more than once. Such ‘double spending’ prevention is the key obstacle

to creating a robust digital currency, ensuring all parties understand and agree upon the

transaction order of the system. Digicash, although comprehensive, still required a trusted

intermediary (a bank) to validate transactions. It therefore was not ‘trustless’, or natively

peer–to–peer.

Blockchains were later designed in 2005 by cryptographer Hal Finney in his ‘Reusable

Proofs of Work’ system [8], which combined Wei Dai’s b–money [9] with Adam Back’s

3

Hashcash [10]. Hashcash being an anti–spam mechanism that requires a small ‘hash’

problem to be solved before sending an email, a feat non–intensive to regular senders,

but hugely computationally expensive to spammers – and b–money being a distributed e–

cash system that solved hash–puzzles to achieve decentralized consensus. Indeed, Hal used

computational puzzles to give ‘miners’ a token, the ‘proof’ that the puzzle was solved. Once

these tokens were ‘mined’ they could be sent to other parties as a currency. Hal however

also did not achieve trustlessness, with his system still requiring a centralized database.

Indeed, the pre–Bitcoin systems lacked the ability to fix the ‘Byzantine Problem’, to

achieve agreement among distributed parties on the state of the data, where malicious

actors could exist [11].

In his seminal paper [12], Satoshi Nakamoto introduced a decentralized consensus

algorithm that employs a blockchain data structure, updated in 10–minute intervals known

as ‘blocks’, to solve such trustlessness issue. Nodes in the network participate via a ‘proof–

of–work’ (PoW) mechanism, which is the solution to a cryptographic puzzle involving the

SHA–256 hash function1. Specifically, each block in the blockchain contains a header,

which is a compact summary of the block’s content and metadata. The header includes

the following key elements:

• Previous Block Hash: A SHA–256 hash of the previous block’s header, ensuring

the blocks are cryptographically linked in a chain.

• Merkle Root: A hash derived from all the transactions in the block, serving as a

fingerprint of the entire transaction set.

• Timestamp: A Unix timestamp indicating when the block was created.

• Difficulty Target: A value that the SHA–256 hash of the new block’s header must

be less than or equal to, in order to be added to the blockchain.

• Nonce: A 32–bit number that miners can adjust to try different hash values.

A new block is appended to the blockchain only if its header, when hashed twice using

SHA–256, produces a value that is less than or equal to the specified difficulty target,

represented by a specific number of leading zeros at the start of the hash.

This PoW process is computationally intensive, requiring specialized hardware and

consuming a significant amount of electrical energy. The cryptographic chain between

blocks — where each block header contains the hash of its predecessor — ensures the

immutability of the entire blockchain. Any alteration to a block’s data would change its

hash, thereby invalidating all previous blocks due to the recursive nature.

1SHA–256 (Secure Hash Algorithm 256–bit) is a cryptographic hash function designed by the National
Security Agency (NSA). It produces a fixed–size (256–bit) hash value from variable–length input data. It
is collision–resistant, meaning it is computationally infeasible to find two different inputs that produce the
same output hash [13].

4

The 10–minute block time in Bitcoin’s protocol serves multiple strategic and technical

purposes. It allows for adequate time for the new block to propagate through the network,

thereby reducing the likelihood of chain forks and the creation of orphan chains. It further

provides enough of a temporal window for nodes to detect and counteract anomalous

behaviour, such as double–spending attempts or Sybil attacks2. Thirdly, the block time

increases the computational burden for an attacker aiming to control a majority of the

network’s hash rate, rendering 51% attacks economically infeasible due to the high costs

of maintaining the required computational power over an extended period of time. The

10–minute target is maintained through a dynamic difficulty adjustment algorithm, which

recalibrates approximately every 2016 block to account for fluctuations in the network’s

total hash rate (the rate of hashes ran in a period of time).

By integrating these components — cryptographic hashing, PoW, and a carefully cali-

brated block time — Nakamoto’s Bitcoin not only solves the Byzantine Generals Problem

[11] in a decentralized environment, but also protects the network against a variety of

potential attacks.

Similar to Ronald M. Lee’s conceptualization of electronic legal contracts as state–

transition systems [15], the Bitcoin ledger functions under a similar paradigm. In this

framework, the ‘state’ encompasses the complete set of all minted coins and confirmed

transactions. Blockchains offer several remarkable properties. They achieve practical

immutability, where tampering is theoretically conceivable but becomes pragmatically

unattainable as long as the network undergoes active verification by decentralized nodes.

This decentralization distributes authority across the network, thereby eliminating single

points of failure. Additionally, blockchains are transparent, as they maintain a publicly

accessible ledger of all transactions. Furthermore, they employ advanced cryptographic

techniques to ensure the robustness and security of the system. Such benefits are core to

the recent rise in their appeal.

2.2 Smart Contracts

Upon observing the function and structure of Bitcoin and Blockchains, Vitalik Buterin

discerned that the potential for blockchain technologies could surpass simply support-

ing mediums of exchange. He envisioned a broader future for blockchains, wherein they

could function as fully decentralized computational platforms, capable of complex state

transitions that aligned with Turing–complete3 scripting languages. This vision was later

developed as Ethereum [16], a blockchain where the ledger did not only register currency

2Sybil attacks exploit the vulnerability in decentralized systems where a single adversary can control
multiple nodes, often by creating fake identities and to subverting the system’s functionality[14]

3A Turing Complete language possesses the capability of simulating any single–taped Turing machine.
This includes the support of basic control structures such as loops and conditionals. Turing–completeness
is critical for general–purpose programming languages, as it ensures the most computational expressiveness
possible.

5

transfers but also a fully decentralized computer system. These interactions are designed

as ‘Smart Contracts’, scripts that lay on top of a blockchain, resistant to change, and

observable by every participant on the network.

Despite Vitalik terming DLT–based scripts ‘Smart Contracts’, the first definition pre-

cedes Ethereum, and was presented pre–blockchain–era in 1996 by Nick Szabo in the

context of centralized systems. Szabo proposed Smart contracts are a ‘computerized

transaction protocol that executes the terms of a contract’, automated code that satisfies

contractual conditions to reduce exceptions both malicious and accidental, and minimize

the need for trusted intermediaries [17]. He proposed their main benefit be the shared

understanding and execution of transaction semantics, communicated in clear logic — but

he also predicted the rise of synthetic assets (digital assets) that combined traditional

securities and derivatives to allow for their efficient trading. Szabo’s centralized Smart

contract model may align further with the current needs of financial institutions — as

adjustments upon mistakes, and trusted databases may be desired, and are a less radical

step.

Within this paper I refer to Smart contracts within the immutable–natured blockchain

context, be that chain controlled with permissioned infrastructure with many trusted

nodes, or a permissionless decentralized protocol. Smart Contracts thus inherit the fol-

lowing benefits:

1. Reduced Transaction Risk

Every transaction undergoes a multi–node verification process. Upon verification,

the transaction is irrevocably recorded on the blockchain. This architecture elimi-

nates the possibility of partial or incomplete transactions, as the execution is strictly

governed by the pre–defined code that is written. As a result, this significantly miti-

gates the risk of malicious activities such as financial fraud, as unless the contract is

pre–written for fraud, which is unfortunately common [18], it cannot be committed

as it would deviate from the written functionality4. In a similar manner, the risk

of accidental errors or mis–specifications is virtually eliminated. This is because the

contract’s state is maintained exogenously on the blockchain, and interactions with

the Smart contract typically involve straightforward instructions or function calls

to execute the next automated step. For instance, in the Ethereum network, an

ERC–20 token transaction that uses up more than the entity’s balance would be

rejected — as it would be inconsistent with the previously verified state stored on

the blockchain, failing the multi–node verification process.

2. Lower Administration, Service Costs and Centralised Risk

4It is important to note that Smart Contracts do not entirely eliminate financial fraud within transac-
tions, as criminal deception is still prone to happen externally to the execution of the Smart Contract —
as is apparent within the rise of ’Pump and Dump’ schemes [19].

6

Centralized systems involve an entity or institution overseeing, validating, and man-

aging transactions. The centralized authority bears the majority of the adminis-

tration costs, including infrastructure maintenance, manpower, and security. Such

centralized structures can also result in bottlenecks in efficiency and are vulnerable

to single points of failure. For example, in 2019 Wells Fargo experienced a signifi-

cant outage that affected its online, mobile and ATM systems [20]. Issues arose in

accessing accounts, receiving or sending payments and receiving accurate balances.

The pause in service was attributed to a data centre fire. This incident is critical

considering the dependence contemporary society has on digital banking.

As an alternative, blockchains operate on a fully decentralized model. The admin-

istrative functions are distributed across the network in the form of a consensus

mechanism. If a singular node that held the entire blockchain were to fail as a result

of a fire, many other full–blockchain–storing nodes would remain in full operation

and service the needs of clients.

3. Improved Process Efficiency

Settlements are automatically completed in a trusted peer–to–peer manner as soon

as the predetermined conditions are met. This automation significantly reduces

turnaround time, as no intermediary is required to be waited upon. For example,

Smart Contracts on Ethereum can be programmed to allow for the release of funds

automatically when certain criteria are satisfied — and can therefore act as escrow

services or collateral management tools.

Understanding these benefits and actualizing the potential of this computation–based

decentralized blockchain, Buterin developed the programming language ‘Solidity’ [21] —

comprehensive and accessible enough to pave the way for a diverse array of decentralized

applications (dApps) and digital assets [22]. The language was primarily designed to be

statically typed (requiring the data type to be specified upon the defining of variables

and are known at compilation time, reducing runtime errors that would result from mis-

matches), and supporting inheritance, libraries, and user–defined types. It was written

with inspiration from JavaScript, Python, and C++, allowing it to be accessible to current

development practices. The platform I build in this thesis utilizes Solidity.

The language is not without its own vulnerabilities. Indeed, in 2016 a bug within

a payment withdrawal in a Smart Contract called the ‘DAO incident’ enabled a user to

withdraw 50 million US Dollars to their private account [23]. They did so by exploiting

the fact that the contract sent the funds before updating the user’s balance to subtract

it. Simply setting up another Smart Contract to recursively half–complete the withdrawal

function enabled all the Smart Contract funds to be drained. Although not technically

against the Smart Contract’s code, this event led to the Ethereum blockchain ‘forking’ into

two (the original one being Ethereum Classic), with the newly followed chain reverting to

7

have the user’s balances not stolen — violating the immutability of the chain and leading

to heavy audits of future Smart Contract protocols.

To enable both fast and secure block propagation, Ethereum imposes a stringent cap on

block size, articulated not in bytes but in ‘gas’ — a measure of computational work. Gas

serves dual roles as both a metering unit for computation and a variable cost for storage.

Each operation, be it computational or storage–related, consumes a predetermined amount

of gas, subject to its own pricing mechanism [21]. The total gas limit for transactions

within a single block remains dynamically around 15 million. An illustration of these

constraints is the storage efficiency when a block is hypothetically filled exclusively with

SSTORE opcodes (storage). Under this scenario, only 0.024MB could be committed to

the block5. This constrained environment naturally leads to escalated transaction fees

whenever demand for blocks outstrips supply. The result is a scalability issue; the chain

becomes prohibitively expensive for mass adoption due to both economic and technical

bottlenecks — the more users use it, the more expensive it becomes to use. While Layer

2 solutions [24] like rollups have been implemented to help mitigate this limitation by

offloading computational tasks off–chain, the scalability conundrum remains an unresolved

issue at the protocol’s core layer.

In comparison to legal contracts, Ethereum–based Smart Contracts, therefore, have

hard limits on their size — and therefore require rigid modularisation to allow for fully

comprehensive agreements. Some of the most influential smart–contract protocols like

that of the decentralised exchange Uniswap V3 have 8 contracts, with 4 existing in the

‘core’ and 4 within the ‘periphery’ [25]. Each is deployed within different transactions,

and each referencing to the address of the other — allowing for full functionality of the

decentralised application.

Pressed into this small size, a Smart Contract undergoes the following consecutive

stages [26]:

1. Creation Stage: Within this stage, the involved parties negotiate the obligations,

rights and prohibitions of the contract. After discussion, lawyers and counsellors

draft the initial contractual agreement, and software developers continue to convert

this agreement into logic–based rules. The Smart Contract conversion is then sub-

ject to the traditional design, implementation and testing procedures for software

engineering, requiring multiple rounds of iterations with all involved stakeholders.

2. Deployment Stage: The fully audited and validated contract is deployed upon the

relevant blockchain. Any changes to the framework require the creation of a new

Smart Contract — with the associated digital assets ‘frozen’ or transferred from the

old.

5This approximation derives from an average SSTORE operation cost of 20,000 gas. Given a 15 million
gas cap, this facilitates 750 SSTORE instances, each consuming 32 bytes — totalling 24,000 bytes or
approximately 0.024MB.

8

3. Execution Stage: After deployment, contract clauses are actively surveilled in

relation to real–world or on–chain events. When predetermined conditions are sat-

isfied, the Smart Contract autonomously executes or authorizes a party to manually

invoke specific functions.

4. Completion Stage: Upon the execution of the contract, and all stages have been

passed, the contract can be considered ‘complete’, with the associated digital assets

transferred from one party to the other. The entire contract is stored at this final

stage in perpetuity.

2.3 Ethereum Request for Comment Standards

Since the beginning of Ethereum, there has been a pressing need to standardize the devel-

opment and interoperability of Smart Contracts. To systematically address this exigency,

the Ethereum community has formulated a protocol specification framework, known as

Ethereum Request for Comment Standards (ERC) [27]. These standards play a key role

in shaping the development of Smart Contracts on the Ethereum network.

2.3.1 Development and Approval Process

The ERC development process starts with the creation of technical specifications for the

proposed features, complemented by a presentation of the underlying considerations and

rationale. These documents are then introduced as Ethereum Improvement Proposals

(EIPs), and are subject to rigorous analysis and iterative refinement by the Ethereum

community of developers and researchers.

2.3.2 Notable ERC Standards

Among the many ERC standards, certain proposals have gained substantial traction and

have become cornerstones of the Ethereum landscape:

• ERC–20: This standard defines the rules for the creation and management of fun-

gible tokens on the Ethereum network. By defining a common interface for token

interactions, ERC–20 has become the standard for the majority of Ethereum to-

kens, including well–known stablecoins like USDT, USDC, and digital assets such as

Polygon (MATIC). Its robust design and absence of significant bugs have led to its

extensive adoption within decentralized token exchanges and protocols. It can be

considered the most seminal Smart Contract template to date [27].

• ERC–721: Targeting a different mode of digital asset management, ERC–721 is a

specification for Non–Fungible Tokens (NFTs). Unlike ERC–20 tokens, each NFT is

distinct, representing ownership of an individual asset. ERC–721 provides functions

9

for the creation, transfer, and querying of these unique assets. For example, with

the function ‘ownerOf’, users can easily identify the ownership of a specific digital

asset in perpetuity. The rise of digital art, collectables, and virtual real estate has

provided market–wide confidence in this standard [28].

• ERC–1155: This standard is recognized for its multi–token properties, as ERC–

1155 enables a single Smart Contract to govern both fungible and non–fungible

tokens. Such an approach optimizes efficiency by condensing token types into one

contract, reducing redundancy and complexity. This Smart Contract template is

used for gaming assets where fungible tokens represent in–game currency and non–

fungible tokens represent single items, or broader financial contexts [29].

2.3.3 Ongoing Innovations

The continuous advancements in blockchain technology necessitate innovation in the ERC

standardization process. The community–driven approach not only facilitates the estab-

lishment of robust standards but also fosters an environment of adaptation. Through the

collective work of its contributors, Ethereum, through its improvement propositions, con-

tinues to refine existing standards, maintaining its position at the forefront of blockchain

technology.

2.4 Oracles

In the realm of Smart Contract applications, oracles stand out with a distinct function

[30]. Like their namesake classical prophetic communication with deities, in the blockchain

ecosystem, oracles serve a pragmatic function to bridge between a Smart Contract and the

outside digital world. They act as intermediaries that fetch and relay data to on–chain

Smart Contracts.

Oracles can be categorized into on–chain and off–chain types. On–chain oracles provide

data that is native to the blockchain, such as block numbers, transaction metadata, or

the state variables of other Smart Contracts. For instance, UniswapV3 functions as an

on-chain oracle by offering token price information derived from the reserves stored in its

liquidity pools [25]. This data is both immediate and immutable, ensuring a high level of

trust and permanent availability.

Conversely, off–chain oracles (what Oracles commonly refer to) offer a broader range of

data types. These oracles source information from external entities, which can vary from

API services delivering weather forecasts or stock market prices to hardware devices in the

Internet of Things (IoT) ecosystem, and even to using complex off–chain computations

and pulling that data on–chain. Some implementations employ human–based oracles to

supply qualitative data, such as election results or significant societal events.

10

Off–chain oracles can further be subdivided into centralized and decentralized archi-

tectures. Centralized oracles depend on a single data source, introducing a potential point

of failure and thus compromising the system’s trustworthiness. On the other hand, decen-

tralized oracles aggregate data from multiple sources — diluting the risk associated with

a single point of failure and enhancing the integrity of the data, alongside the reliability

of the data, as many fallbacks may exist [30].

ChainLink [5] is a leading Oracle network. Its architecture is relatively simple — when

a specific type of external data is needed, a ‘Requesting Contract’ is initiated, containing

the type of information that is needed. From this, the ‘Service Level Agreement (SLA)

Contract’ is initiated, logging the request as an ‘event’ and generating three sub–contracts:

Reputation, Order–Matching, and Aggregating, each of which manages the different stages

of data retrieval and validation. The Reputation contract manages the selection of the

best oracles for each data request, broadcasting the request to off–chain ‘ChainLink’ nodes

who bid for the opportunity to provide the data at remuneration of an amount of ‘LINK’

tokens. The Order–Matching contract reviews each of the bids and chooses the best nodes

on reputation, past performance and cost. Finally, the Aggregating contract gathers all

the data, verifies it, and produces a consolidated result that is returned to the original

Smart Contract. Chainlink Nodes stake6 LINK tokens as a security deposit. If a node

acts maliciously, with inaccurate data provided sporadically at uneven times, a portion of

their staked LINK tokens is forfeited as punishment — ChainLink is, therefore, both the

‘Carrot and the Stick’ ensuring off–chain data is accurately inputed into the blockchain.

2.5 The Philosophy of Decentralised Consensus

With off–chain Oracles bridging between digital ‘worlds’, one may wonder which world

provides legitimate data. From the sociological perspective of Strong Social Construction-

ism [31], which states that the nature of reality is a result of our shared conceptual beliefs

of its constituents, I argue that blockchains can be seen as the only real digital reality,

with Smart Contracts the ‘Law’ that governs it.

Indeed, if reality is created by beliefs and systems of knowledge, which hinge upon

a mutual trust in shared theoretical constructs — and blockchains are a mechanism for

creating a fully decentralized and agreed–upon knowledge system— then one can therefore

infer that blockchains are another fully controlled reality humankind has made within its

own, wherein anyone can participate in its construction from the grassroots level. New

blocks are only added when the majority of nodes (synonymously, society) agree upon

the consensus of the data. Indeed, unlike the complex interplay of variables within the

physical world, the blockchain universe is subject to well–defined algorithmic parameters.

6Staking in the contect of blockchains involves locking up a certain amount of cryptocurrency in a smart
contract to participate in a consensus–giving activity, earning rewards and contributing to the functionality
of the protocol.

11

Such an idea can be analogized within the context of Ludwig Wittgenstein’s language

games [32]. For as in the same manner as the ‘standard meter stick in Paris’ was the

reference point for the system of length measurement systems — systems where objects

are measured against another object — but the stick itself is a ‘blind–spot’ of the system

it creates (the stick cannot measure itself), a blockchain network establishes similar mea-

surement consensus upon who owns what, which data is authentic, and the state of its

decentralized computation.

Like the standard meter stick, a blockchain has no awareness of data outside its own

ecosystem — it is the ‘blind spot’ against the external digital world. Like a meter–ruler

is to the Parisian standard meter stick, off–chain ‘Oracles’ should be seen as instruments

of measuring the external digital world to enable the validation of the on–chain data.

The language game of a blockchain, with actions and words like transactions, blocks and

consensus mechanisms thus interacts with the external language game of real–world asset

prices, APIs, events, photos, videos and ownership to ‘enrich the form of life’ of consensus.

2.6 Legal Status of Smart Contracts

Smart Contracts epitomize what Professor of Law Lawrence Lessig refers to as the archi-

tectural ‘Law’ in the digital domain [33]. Designed to autonomously execute predefined

rules, Smart Contracts function as a self–regulating system. Drawing upon Lessig’s sem-

inal work, Code and Other Laws of Cyberspace [34], the phrase ‘Code is Law’ proposes

the idea that the code, authored by developers, serves as the governing framework for

interactions in cyberspace. It embodies value judgments and imposes rules that regulate

these interactions. However, he poises that it is crucial to recognize that while the al-

gorithmic law instantiated by Smart Contracts is unambiguous in its execution, it is not

devoid of human influence. Human developers set the initial conditions and rules, thereby

introducing a layer of subjectivity and potential for error. Consequently, despite their de-

terministic nature, Smart Contracts operate within a broader socio–technical ecosystem,

complicating the simplistic notion that ‘Code is Law’.

Indeed, if one thinks of a contract as a payment or promise, in exchange for a payment

or promise (with consideration), then Smart Contracts can be built on top as crypto-

graphic ‘boxes’ [16] that contain values and can only be unlocked (to reveal their payment

or promise) once certain conditions are met. From a legal perspective, they are digital

‘vending machines’, which upon correctly entering currency or pressing the correct button,

perform the task of delivering you a product. Indeed, the code of the vending machine

is hard–wired to perform this singular task — and can be seen as the machine’s internal

‘Law’ that forbids it from performing any other action.

Indeed, one expects the vending machine to, once paid, provide the product. Upon

failure, one rings the manufacturer, who is obligated to provide a refund or completion of

12

the obligation — the provision of the product. In an identical manner, Smart Contracts

do not live in a legal vacuum, and despite existing on trustless blockchains, will, in reality,

require enforcement by third parties. If an individual attempts to ‘game’ the Smart Con-

tract by abusing the functionality of the code — as what occurred in the ‘DAO Incident’

[23] — it is still considered illegal in practice and subject to law enforcement. Again,

‘Code is Law’ was demonstrated to only be true to the extent that both parties have a

mutual understanding of the values behind how the Smart Contract code is expected to

perform.

Perhaps stated in a strictly defined manner, Josh Stark [35] states that ‘Smart Con-

tracts’ are either defined as either the execution code itself — the ‘Smart Contract Code’,

or as binding legal documents, ‘Smart Legal Contracts’ where the viability of the con-

tract is dependent on the intersection of the technology (code), but also the existing legal

framework. In the latter, the legal framework can encapsulate some Smart Contract Code

to execute certain obligations or conditions, whereas in the former, the ‘mart Contract

Code exists outside natural language, and as computer–based operations.

Smart contracts are thus either execution code or a binding legal agreement. Pinpoint-

ing a clear definition is of utmost importance, as depending on whether legal conditions

are met, a Smart Contract may or may not serve in a practical context as a contract.

Liken to Clack et al’s paper [35], in my thesis ‘Smart Contract’ refers to both, as an

“automatable and enforceable agreement. Automatable by computer, although

some parts may require human input or control. Enforceable either by legal en-

forcement of rights and obligations or via tamper–proof execution of computer

code.” [35]

In this context, automatable refers to partly automated, with some input needed due to

Ethereum requiring being externally called for ‘gas’ — with enforceable meaning that the

code should run without error and that from the legal perspective, rights and obligations

accrue with the ability for traditional and non–traditional enforcement methods such as

arbitration, recourse to the courts of law, or on–chain ‘slashing’ of remuneration if the

underlying code is tampered with [36].

Within my framework, I expand to let Smart Contracts be a constituent part of an

entire agreement. That is, a Smart Contract can encapsulate the transactional–level obli-

gations of the contract, and allow for some fallback–based conditional clauses to be au-

tomated — but still exist within a written natural language contract. Smart Contracts

are thus a ‘piece’ of a contractual puzzle put together by parties — much like how the

numerical parameters or mathematical concepts currently make up derivative agreements

today.

13

2.7 The Internal and External Model Of Smart Legal

Contracts

Such a hybrid proposition is not novel. Indeed, Linklaters proposed two distinctive models

for the near future of Smart Contracts, based upon how integrated the Smart Contract

code is with legal obligations [37].

2.7.1 External Model

The first is an external model, wherein the agreement would remain in a large majority in

its natural language form. However, external to the legal contract, some logical elements

are placed in the Smart Contract Code for automation upon conditions being satisfied.

Within this model, the Smart Contract Code would be exogenous to the legality of the

natural language contract — with the natural language contract taking precedence in any

dispute. The code would thus be a ‘reflection’ of the obligations presented in the human

language agreement. If the automation is executed with error, the natural language would

‘rescue’ the obligation of the parties.

For example, a lease agreement on a residential house may be written in standard legal

language, outlining the rental amount, duration of the lease, maintenance responsibilities

etc — and be reflected in a Smart Contract agreement that is created to automate lease

payments, the depositing collateral, and a maintenance fund. If there were to be any

issues with an automated transfer, like that of an incorrect amount or date, both parties

would still adhere to the natural language terms.

The external model enables the efficiency, instant settlement and reduction in human

error issues that Smart Contracts bring, but also maintains flexibility, human intervention

and legal recourse upon issues in the automation process.

2.7.2 Internal Model

Within the internal model, the legal contract would still largely remain in its current

form — however, certain automatable conditional logic would be rewritten in a formal

representation for conditional logic to be executed automatically.

The written contract would therefore look like an amalgamation of pseudo–code, con-

trolled legal natural language, logical statements, confirmation parameters, and natural

language clauses. Each section would reference each other, and all would have legal force.

The pseudo–code (the ‘formal’ logic), may however be presented differently than the code

within the final Smart Contract Code, as each programming language may differ in its

sequence of commands — and therefore would require translation in a way that holds true

to the transactional logic.

Notably, within the Internal Model, there is a closer resemblance to ‘Code is Law’,

14

meaning practitioners must have a clear and shared understanding of the code that im-

plements the logic. As I present in Chapter 3, such an area would be suitable for legal

standards to initially be formed as a combination of natural language contracts and Smart

Contracts — as heavy auditing of certain functions could be extrapolated and referenced

in different Internal Model agreements.

An example of the Internal Model is present when one considers a manufacturer and

supplier entering into an agreement for the supply of raw materials — where the contract

would constitute both natural language and code–based logical statements. The code

would allow for logic specifying the automated order placements for materials when the

manufacturer inventory falls below a pre–specified level. To ensure pricing is correct, both

parties could agree on an Oracle’s pricing of predefined and external market variables —

like that of global commodity prices, exchanged to local currency values.

Although appearing attractive, such a model is prone to cyber risks, in which there

is a propensity for malicious actors, glitches, unauthorized alterations, and breaches of

contract which can emerge from the code itself. As a result, each party requires an attempt

at predicting the likelihood and severity of the risk, assigning a value to it, and considering

whether it is worthwhile taking it on in exchange for the aforementioned efficiency gains.

Through rigorous auditing and standardization, the algorithmic components of an

Internal agreement can attain a high level of trustworthiness in executing their designated

obligations. However, the subsequent complexity inherent in the Internal Model serves as

a double–edged sword, producing contracts that are highly dynamic yet contain elevated

risk for all parties involved. Additionally, the incorporation of Smart Contract Code

inherently restricts the contract’s operational flexibility, as actions are strictly defined to

only occur in one way — a limitation not present in conventional legal contracts, which

offer a broader scope for variability that can be interpreted in many different manners.

These factors likely contribute to the limited market adoption of the Internal Model.

2.8 Smart Derivative Contracts

A clear implementation of Smart Contracts within the financial sector could be the au-

tomation of derivative contracts. Indeed, DLT can provide the following substantial ben-

efits [38]:

1. Real–time Settlement And Reductions in Transaction Fees: Current trans-

fer fees are expensive — with the average international fee reaching 7.6 percent of the

remitted amount for money transfer operations [39]. Within the context of deriva-

tives, sending payments is a complex process, including multiple bank verification

15

of the party’s accounts (for KYC7 and AML8), followed by transferals of payment

instructions that may require intermediary banks, clearing houses, the SWIFT Net-

work, and eventually an end–of–day reconciliation of transaction, with notifications

provided at every step. Derivatives add to this complexity, often requiring collateral

management, margin calls and many other considerations that intertwine with the

payment process. Smart Derivative Contracts simplify the process by allowing the

sender’s digital identity (secured by their private key) to be sufficient verification to

directly send funds to another digital identity — thereby cutting out costly interme-

diaries, providing instant ownership and passing on the savings to parties. Further,

both collateral and currency exchange operations can be fulfilled in a peer–to–peer

manner, with predictable and transparent fees.

2. Improved Asset Rehypothecation: Asset rehypothecation is a common practice

wherein financial institutions use collateral posted by their borrowers to cover their

own trades. Current risks exist where institutions confuse the ownership of these

assets — producing uncertainties for rehypothecated asset valuations. A clear and

immutable transaction history would allow for clear knowledge of chained transac-

tions. Indeed, a tokenized solution for representing collateral could be traded and

would enable regulators to monitor each chain and enforce a regulatory rehypoth-

ecation limit to halt or reduce trading near that limit. In effect, one could heavily

reduce the likelihood of systemic failure in the derivatives market.

3. Automation of Compliance: To remain in operation, financial institutions

need to be audited, report their tax, stress test, and submit routine filing to many

appropriate financial regulatory authorities. On average, a study found that auditing

amounted to a cost of 8.1 million dollars a year [40]. DLT would allow auditors to

instantly access the required information they need, produce automated reports, and

submit these reports to officials for review. The new process would drastically cut

investigatory labour hours, lending to safer and more efficient markets.

4. Lowering Costs of Entry: Smart contracts can significantly lower the barri-

ers to entry for both institutional and retail participants in the Over–The–Counter

(OTC) derivatives market. Traditional avenues necessitate a complex and expensive

legal framework, characterized by prolonged negotiations, exhaustive legal reviews,

and multiple intermediaries. In contrast, Smart Contracts that leverage blockchain

technology have the potential to automate these processes9, thereby reducing trans-

actional costs and accelerating execution times.

7Know Your Customer (KYC) is a legal framework employed in the financial services industry to
authenticate the identity of clients. The process involves the verification of personal information, such as
government–issued identification and proof of address, to assess the risk profile of an individual or entity.

8Anti–Money Laundering (AML) refers to a set of laws and regulations designed to prevent the illegal
gaining of income through actions like money laundering and fraud.

9It should be emphasized that the acceleration in framework construction is contingent upon the specific

16

Economically, the automation afforded by Smart Contracts has profound implica-

tions for market dynamics. By lowering transactional and legal complexities, Smart

Contracts facilitate greater market participation, intensifying competition. This in-

creased competition, in turn, exerts downward pressure on the price of derivatives,

making them more accessible. Moreover, it fosters a more efficient allocation of re-

sources in financial markets, better optimising capital distribution for the benefit of

all. This culminates in a more liquid, efficient, and inclusive financial ecosystem.

Such a shift in the process towards digitization would therefore drastically cut investi-

gatory labour hours, and lend to safer and more efficient markets.

2.9 International Swaps and Derivatives Association

A champion of such concerns as efficiency, standardization, and market safety, the Interna-

tional Swaps and Derivatives Association (ISDA), is providing both technology and law–

based solutions in alignment with the advancements in DLT. Indeed, they have recognized

the potential power of the standardization of economic terms, alongside their automation

could be used within aspects of their widely accepted ISDA Master Agreement, and have

created the Common Domain Model for the former, and the Digital Assets Definitions

for the latter. Referenced succinctly by Clack and McGonagle [41], ISDA’s perspective is

that:

“Focusing exclusively on the economic terms of an individual transaction may ignore

much of the external complexity that can affect a party’s ability to perform its obligations

(or assert its rights) in relation to that transaction.”

That is, rather than the external model, ISDA believes Smart Contract agreements

should be internal, with implementation heavily dependent upon the external complexity

of natural language. It therefore follows that a marriage of computer scientists, lawyers,

banking practitioners, and policymakers is required to steer financial law toward the stan-

dardization and production of Smart Contracts.

This section describes the primary constituents of the Master Agreements, before ex-

ploring recent Smart Contract advancements.

2.9.1 The ISDA Master Agreement

The ISDA master agreement is a standardized contract used for Over–The–Counter deriva-

tives. The agreement itself is not one singular document — and is commonly split into

the following sections:

implementation of Distributed Ledger Technology (DLT) legal framework. Delays may arise if parties
engage in protracted deliberations over the interpretation of pseudo–code.

17

1. Master Agreement : A standalone document setting forth the standard terms and

conditions between the two parties. Complex interactions like payment netting and

default ‘close–out’ netting are provided within this document. It further includes

miscellaneous legal provisions like waivers amendments and calculations.

2. Schedule : The amendments or exceptions to the general terms are provided: the

customization of the master agreement. Adjustments to default or termination

events are common, depending on the commercial context.

3. Product Definitions: The key terms, phrases and concepts are defined for the

agreement. It ensures both parties understand the language used within the docu-

ments — for the minimization of legal disputes.

4. Confirmations: A written confirmation outlining the terms of each transaction

under the master agreement. The confirmation document enables the reproduction

of a singular agreement with different parameters — and it is where the majority of

the variability in the framework lies.

5. Credit Support Annex : for collateral–based derivatives, outlines the collateral

agreements, requirements, and mechanisms for both posting and retrieving collateral.

The totality of these documents creates a cohesive and flexible framework for deriva-

tives trading. The nature of the Master agreement document is presented below in Figure

2.1, with the relationship and transactions documents separated appropriately.

Figure 2.1: Clack and McGonagle and Clack, 2019. The current process of creating an
ISDA agreement is separated into both transactional and relationship–based sections.

18

In the creation of a legally enforceable Smart Contract, the provision structures within

the Master Agreement, as characterized by McGonagle [42], inherently possess a forward–

looking orientation that hinges on variables unpredictable at the contract’s inception. This

contrasts with computational code, which is deterministic and operates on immediate

conditions. McGonagle considers that a separation of contract clauses into automatable

and non-automatable elements offers an intermediary solution. However, a challenge arises

from ‘severability issues’, where operational clauses are intricately interwoven with other

semantic components, constraining the real feasibility of automation.

To remediate the aforementioned severability issue, the International Swaps and Deriva-

tives Association (ISDA) has conceived a Legal Agreement and Clause Taxonomy [43].

This Taxonomy deconstructs contracts, attributing semantics to varying obligations and

encapsulated events. Significantly, the Taxonomy encourages an approach grounded in

substance, aiming to codify the contractual outcomes as opposed to the lexical arrange-

ments that articulate them. ISDA has also created a Clause Library [43], rooted in the Tax-

onomy. Available digitally via the ISDA Create platform [44], the library gives standard-

ized drafting alternatives corresponding to the outcomes given in the Taxonomy, thereby

facilitating a shift away from bespoke drafting — improving efficiency.

In summary, the Taxonomy serves as an effective framework for isolating the substance

of clauses, thereby enabling their conversion into machine–readable legal agreement data

— like that of the Common Domain Model.

2.9.2 ISDA Common Domain Model

A more recent product released by ISDA to standardize each derivative’s data and process

representation among derivatives is the Common Domain Model (CDM) [45].

The model itself is technology agnostic, to enable a wide amount of implementation

options for the user. Indeed, written in Rosetta [46] the CDM has distributions in Type-

script, Python, Java, and many other languages at both the low and high level. Such a

design philosophy thus facilitates both low–level innovation within Smart Contracts and

high–level innovation transaction representation — a “plug and play” [47] infrastructure.

It currently resides as a ‘middle–layer’ implementation, with type specifications for data

and function definitions for logic — the former has been focused on to a greater extent.

The CDM can be further understood as a state transition system [47], with events

and operations altering each state. Indeed, within a contract ‘operations’ can consist of

a sequence of “Before” and “After” events, with an event being an action that changes

the state (contract information) at a given time. Such an event may describe a transfer

of value or a significant change in economic description. The CDM creates a reusable

pattern for describing such actions and transitions with careful consideration — as the

semantics of whether a “Before” or “After” event is actioned in the operation or requires

having been actioned is critical information.

19

The CDM is open source, allowing any participant to contribute and benefit. With

an example type presented in Figure 2.2 below, It is an ambitious tool, that is open to

emerging technologies — and in many ways may be a vital bridge connecting traditional

finance to cutting–edge innovations.

Figure 2.2: Illustration of the ‘DateRange‘ data type in Rosetta’s implementation of the
Common Domain Model (CDM). The figure elucidates the data structure and associated
metadata.

Source: https:
// ui. rosetta-technology. io/ #/ workspaces/ read-only-COMMON-DOMAIN-MODEL

2.10 ISDA Digital Asset Definitions

A new product definition specific to digital assets was released in 2023 as The Digital Asset

Definitions [48]. This is ISDA’s first standardized legal terms and product definitions for

digital asset derivative trades. Partly written in a controlled language structure for the

facilitation of the CDM, automation, and Smart Contracts, the definitions provide for

cash–settled forwards, calls, and put options.

The primary innovation within the document is the classification of three Disruption

Events and Fallbacks specific to blockchain infrastructure:

1. Price–source Disruptions: where the price source (which could exist as an on–

chain Oracle), is either unavailable or discontinued — creating a ‘Price Source Dis-

ruption Event’ that obligates a notice provision to a ‘Material Change Determining

Party’ — and thus creates a waterfall of applicable events, like that of termination,

calculation agent—intervention, or switching to a fallback settlement price source.

2. Fork Disruptions: Where as a result of a blockchain protocol change that pro-

duces two successor digital assets on distinctive chains, an obligation to raise a ‘Fork

Disruption Event’ is made in which the ‘Fork Determining Party’ refers to a pre–

determined calculation agent that amends the terms of transactions.

3. Change in Law Disruptions: Where it becomes illegal for one or more of the

parties to partake in the agreement, like for example the banning of blockchains

20

https://ui.rosetta-technology.io/##/workspaces/read-only-COMMON-DOMAIN-MODEL
https://ui.rosetta-technology.io/##/workspaces/read-only-COMMON-DOMAIN-MODEL

within one’s legal jurisdiction. One of the two parties gives a termination notice to

the other — to commence an early ceasing of the contract.

The ultimate goal of digital asset definitions is the promotion of an efficient derivatives

market for digital assets. Indeed, despite there being recent rapid growth in digital assets,

failures in the cryptocurrency market such as FTX’s bankruptcy [49], and Celcius’s collapse

[50], necessitate a contractual framework like that of the one put forward.

2.10.1 Smart Contract Templates

ISDA, UCL and Barclays have collaborated to envision Smart Contract Templates as a

method of facilitating code development that aligns with the ISDA documentation ar-

chitecture [35]. These templates are aimed at early–stage verification, validation, and

debugging, with an impetus to create a technology–agnostic template at the earliest stage

of code development.

As a preliminary structure, they suggest that prior to negotiation the parties should

agree upon a Master Agreement Smart Contract template, and then agree upon the Prod-

uct Definition code templates, one for each derivatives product type used, and shared for

all relevant transactions. Upon completion, copies of the Smart Contract templates will

be made, with the code modified with desired changes to the legal provisions and function-

ality. The resulting modified code will be prepared as a template for propagation with the

correct parameter values, visible within the logic and data presented in the Confirmation

document. The final version will be run on a centralized or distributed ledger — at the

choosing of the parties. The faithfulness of the final contract code to the legal agreement

would require stringent agreement between lawyers and computer scientists.

21

Chapter 3

Methodology

The following sections detail the design and implementation of Smart Contract templates

for derivative contracts — taking heed of the ISDA Master Agreement, Digital Asset

Definitions, and Common Domain Model. I aim to propose a succinct methodology for

implementing modular and reproducible Smart Contract templates — implementing a

‘focal point’ Smart Contract to wrap the entire agreement.

3.1 The Smart Confirmation Contract

An ISDA confirmation contract states its purpose as being “evidence (to) a complete and

binding agreement between you and us to enter into the Transaction on the terms set forth

below”. It is thus the central point in asserting that both parties have reached a full and

legally enforceable agreement on certain transactions.

Within the Master Agreement, the confirmations delineate the ‘General Terms’ of the

contract, including who the buyer and seller are, the forward price agreed, and the relevant

parameters for the completion of the contract. It further specifies electable disruption

events, like that in the Digital Asset Definitions of a ‘fork–event’ (where the underlying

chain splits in two) or a hedging event, wherein a party is unable to practically hedge

against their position. These parameterized terms are broken into natural language tables,

like that shown below in Figure 3.1.

Upon the full entry of parameters in a series of these tables, the confirmation docu-

ment is signed, marking the conclusion of the agreement creation process. Containing the

majority of the adjustable variability by simply modifying fields such as ‘forward price’

or price source, and referencing the Master Agreement and Schedule, the Confirmation

contract can be equated to a wrapper for the entire agreement framework around it.

I propose a paradigm shift in how the Confirmation document is perceived within

the Master Agreement workflow of Smart Contracts. Rather than being the ‘end’ of the

agreement process, it should be recognized as the centre or nucleus of it. Viewed as a hub,

22

Figure 3.1: Example of the General Terms of a derivative agreement confirmation. Pa-
rameters are held as cells in the table.

all other documents, Smart Contracts, and relevant information can be appended as spokes,

with the confirmation contract explicitly specifying the precedence of one document over

another. The appended spokes can therefore be predeployed upon a blockchain once, and

appended at will in the template construction process. Amendments, being permanently

recorded and immutable, would easily be implemented by swapping out a spoke for another

or overwriting a stored parameter. To find all the information relevant to the contract, one

may refer to this hub, creating a more organized and interconnected system of information

and dependence.

Taking inspiration from such a central ‘agreement’ structure, I start by formalizing a

Smart Confirmation Contract. Like its natural language inspiration, this Smart Contract

would hold the previous transactional parameters of the contract, yet would also hold

a reference to the natural language contract (Master Agreement and Schedule), in the

fashion of a stored hash or the file stored on–chain itself. Further added are modular ‘logic’

Smart Contracts, which are strictly given permission to alter the state of the agreement

in the confirmation contract. A Smart Confirmation Contract (presented in Figure 3.2)

should encapsulate both the written agreement and its operational completion, and must

therefore have at minimum the following constituents:

1. The Natural Language Document References (MA, Schedule etc.)

In the form of a hash, or the document itself (in encrypted or decrypted form).

23

Figure 3.2: A display of the four different data structures that are used in the composition
of a Smart Confirmation Contract. Further, how the Common Domain model conditions
the data types in the Logic Module stack, and the transaction terms and parameters.

2. The Transactional Terms (General Terms, Disruption Applicable Events)

Such terms can be conditioned with standardized representations, like that of the

Common Domain Model.

3. The Logical State of the Agreement (‘Logic State’)

Represented by a structure of boolean values that create a directed tree structure

for the encapsulation of the logical flow in the agreement process. Nodes in this

tree correspond to specific actions or states within the agreement, with directed

edges indicating the permissible transitions between these states. Boolean values

are associated with each node, denoting whether a given action has been completed

or is yet to be executed. ‘Logic Module Smart Contracts1’ utilize this directed tree

to verify their ability to alter the confirmation contract state, ensuring compliance

with the predefined logical sequence of the agreement.

1Logic Module Smart Contracts, expanded upon in Section 3.1.4, are standardised singleton Smart
Contracts that are responsible for a singular functionality in the derivatives life cycle, like that of the
signing process.

24

4. A Permissioned Contracts List

A list of references to operational ‘Logic Module Smart Contracts’. This list, along-

side the Logic State of the agreement, defines the transactional lifecycle of the con-

tract.

5. Event Emission Functionality

This entails a mechanism embedded within the confirmation Smart Contract to emit

specific events that correspond to various stages or actions within the agreement. At

a minimum, this functionality must include one definitive function to emit an event,

but typically it would comprise a collection of specialized functions tailored to the

unique events of the agreement. These events may be invoked either directly from the

confirmation contract or from the associated logic contracts that the confirmation

contract permissions.

For each derivative in this system, the majority of variability is now derived from both

the transactional terms and the chosen Logic State structure — with subsequently chosen

Logic Modules that are chosen to implement them.

Moreover, the hub–and–spoke structure facilitates a centralized point for implementing

the Common Domain Model (CDM), eliminating the need to repeatedly inherit or redefine

it across various interconnected Smart Contracts. Specifically, the CDM is only required

to ‘condition’ the data structures and functions associated with the transactional terms

and the functions within the Logic Modules. By doing so, the Logic Modules that rely

on these values can directly reference them without having to re–establish or inherit these

structures. Hereafter, I will be detailing the creation of a Smart Confirmation Contract

and a platform to prove its conceptual validity, basing the creation on Ethereum Virtual

Machine compatible Smart Contracts.

3.1.1 Translating the Common Domain Model into Solidity

I start by translating the Common Domain Model, going from its Typescript implementa-

tion to a full Solidity one. I do so by going through each line of the types, Enumerations

and Metatypes files, changing the ‘interface’ definitions to solidity ‘structs’ and switching

each field from being typed with “name: [type]” to “[type] name”, in line with Solidity’s

syntax. I preserve comments, that share the same syntax.

I then wrap the ‘types.ts’ declarations into a single CDM.sol contract and import the

corresponding Enums.sol and Metatypes.sol for inheritance of their types. This creates a

direct hierarchy, I remove breaking declarations and circular dependencies, (discussed in

detail within the discussion section) before compiling the code to verify that it is opera-

tional. I am left with one CDM.sol Smart Contract of considerable size, shown in Figure

3.3.

25

Figure 3.3: The start of the CDM Smart Contract, written in solidity. Visible is the
inheritance of the Metatypes and Enumerations Smart Contracts. The entirety of the
shown Smart Contract is data type declarations.

3.1.2 Modularisation of the CDM

The CDM.sol I constructed has approximately 2500 fields and over 700 data structures,

with the bytecode of a Solidity–based CDM implementation being too large to be deploy-

able on any public EVM chain. As such, I require further modularization of the types into

manageable type–oriented Smart Contracts.

For the purpose of the Non–deliverable forward, Call and Put contracts I conjure the

Smart Contracts: CDMParticipants.sol, CDMPricesource.sol, CDMPrice.sol, CDMCash-

SettlementTerms.sol, and CDMSpecifiedCurrency.sol. Each of which contains the relevant

sub–types for the overarching type.

In Figure 3.4, the hierarchical structure of participant types within the Smart Contract

26

Figure 3.4: I take the Typescript CashSettlementTerms type, exported and translate it to
modular EVM–based Smart Contract that implements the relevant CashSettlementTerms
fields — with relevant dependencies. Further visible is the new field ‘ethValuationTime-
Date’, which can be used natively within Ethereum Smart Contracts. Notably the unused
optional fields are omitted from the Smart Contract to preserve space.

is displayed after translation on the right image. Specifically, the Buyr and Sellr types

rely on the AcctOwnr type, which is in turn dependent on the Id type. The latter solely

hinges on the native address type inherent to the Ethereum platform.

To harmonize this type of hierarchy with the practical requirements of an operational

Smart Contract, additional fields are incorporated to govern the contract’s logic. For

instance, the signed field is introduced, holding a boolean value to signify whether the

contract has been duly signed.

In the context of the Common Domain Model (CDM), the Id type incorporates a

LEI2 (Legal Entity Identifier). However, given the decentralized nature of blockchain, an

Ethereum address aptly replaces the LEI. Consequently, redundant fields that consume

Ethereum Virtual Machine (EVM) storage slots are pruned from the contract.

It is important to note that Solidity does not offer native support for optional fields.

Fields in Solidity structures, even when null, occupy storage slots. To optimize for stor-

2The Legal Entity Identifier (LEI) is a 20–character alphanumeric code that uniquely identifies legally
distinct entities participating in financial transactions. Within the CDM, it is stored as a string.

27

age space, unused structures are excised from the contract. What remains are modular

contracts stripped down to their essential elements, efficiently representing the required

types while conserving EVM resources.

This streamlined approach results in lean, storage–efficient modularised CDM con-

tracts, equipped with only the necessary types and logic, thereby making it optimally

compatible with the constraints and capabilities of the Ethereum blockchain.

3.1.3 Conditioning of the Confirmation Smart Contract with the

Common Domain Model

With the transactional terms of the natural language Confirmation contract encapsulated

as stored variables, I then manually condition their composition to align with the Common

Domain Model (CDM) modules of Section 3.2. This alignment is achieved by importing

a list of contextually relevant CDM Smart Contract modules as defined in the previous

section and initiating them at the time of contract construction.

These specialized modules enable variables such as ‘forward price’ to be typed as ‘price’,

thereby facilitating a seamless transition between the CDM’s off–chain and on–chain rep-

resentations. Such uniformity ensures that consistency is maintained across different plat-

forms, enhancing the accessibility of the current derivatives market infrastructure. Figure

3.5 illustrates the comprehensive process of transforming from the Rosetta CDM to mod-

ular CDM–type Smart Contracts.

Updates to the CDM are reflected within the Rosetta implementation and subsequently

permeate through to the Smart Confirmation Contract and its selected Logic Modules.

This link ensures that legacy smart confirmation contracts remain aligned with previous

CDM implementations, while newer contracts adhere to the latest version. Therefore, it

is important that the CDM data structures are kept standardized. This standardization

not only preserves compatibility across various implementations but also underpins the

overall integrity of the derivatives trading ecosystem.

3.1.4 The Logic Module: A Singleton Standardised Agnostic Logic

Smart Contract

To implement the logical state outlined within the Smart Confirmation Contracts, I pro-

pose a modular paradigm comprising ‘Logic’ contracts that seamlessly integrate with the

central Smart Contract. This integration is facilitated by standardized ‘Logic Module Con-

tracts’, designed to extract readable data from the confirmation document and equipped

with explicit permissions to modify the state of the Smart Confirmation Contract.

Each Logic Module Contract is architecturally unique, tailored to perform a specific

task, and encapsulated within a ‘singleton’ contract. For instance, the cryptographic ‘sign-

ing’ of the contract, including changes to the ‘BuyerSigned’ or ‘SellerSigned’ boolean val-

28

Figure 3.5: The process of going from the CDM that is written in Rosetta, to a code-
generated CDM in Typescript, to a CDMwritten in Solidity, to CDM–type Smart Contract
modules.

29

ues in the smart confirmation contracts logic state, would reside solely within a dedicated

‘BuyerSellerSigned.sol’ contract. The Logic Module Contract could further alter the state

of other contracts on–chain, be that transferring ERC–20 tokens, collateral management

contracts or Oracles.

In an effort to foster readability and structural coherence, every function is crafted

with an autonomous logic. This design choice eliminates the need for globally hard–coded

variables, thereby preserving the sequentiality in the code. Sequentiality in this context

ensures that code execution progresses in a line–by–line fashion, allowing for straightfor-

ward traversal from one step to the next. Such an approach further benefits legal experts,

who can read the operational logic of each function simply by examining its printout.

Indeed, they would not have to navigate between disparate functions and classes.

The ramifications of this architecture extend beyond mere code structure. Allowing a

single logic module contract to be deployed, it paves the way for flexible utilization by any

authorized Smart Confirmation Contract. As a result, each module becomes a ‘standard’

that can be customized by legal authorities. An example might be the International Swaps

and Derivatives Association (ISDA) creating a ‘PriceSourceDisruption.sol’ logic contract,

delineating selectable events, defining terms, outlining prerequisites, and culminating with

a pseudocode function to manage fallback effects or terminations.

Each Logic Module can be encapsulated within a natural language contract, akin to the

Internal Model discussed in Subsection 2.7.2 and shown in Figure 3.6. These terms would

clarify both the module’s functionality and its role within the overarching architecture

of the agreement. Take, for instance, a module responsible for cryptographic signing:

the contract could specify the cryptographic algorithm employed, as well as delineate

contingency clauses to be activated in scenarios such as algorithmic failure or obsolescence

due to cryptographic advancements like quantum computing.

This integration of natural language not only enhances comprehensibility but fosters

alignment between technical implementation and legal interpretation. By providing a

detailed description of each logic module’s function, parameters, conditions, and outcomes,

the natural language contract serves as both a guide and a legal reference — making each

Logic Module its own Internal Smart Contract.

For legal professionals, this combination provides a bridge between the technical com-

plexities of Smart Contract Code and traditional legal framework. It ensures that the

legal context, stipulations, and objectives are readily understood, without the necessity to

decipher complex coding structures. For technologists, the natural language explanations

offer insights into the legal constraints and considerations that underpin the coded logic,

facilitating the development of legally compliant and context–aware Smart Contracts.

Furthermore, the availability of natural language contracts enables a broader audience,

including regulators, auditors, and non–technical stakeholders, to engage with and assess

the confirmation contract process. The standardized approach to combining legal language

30

with technical code also aids in maintaining consistency and uniformity across different

agreements and jurisdictions.

This approach gives the Smart Confirmation Contract the ability to bridge the divide

between conventional legal documents and their Smart Contract analogues, amplifying the

adaptability, agility and flexibility of the financial contractual ecosystem.

Figure 3.6: An example of how a Logic Module contract for the ‘Increased Cost of
Hedging’ event in the Digital Asset Definitions may appear. Visually, one may have
controlled natural language and the relevant code for its implementation. The code would
follow the four–section standardised structure. The image is shown with the permission
of ISDA.

3.1.5 Four Section Standardisation of Logic Module Smart Con-

tracts

In proposing an architecture for singleton logic modules, it is important to include an

internal standardization for how functions should be written. Indeed, as is shown in

Figure ???3.7 the Smart Confirmation Contract’s address is the first parameter for each

Logic Module. This configuration imbues the versatility of individual Logic Modules,

allowing them to modify multiple Smart Confirmation Contracts while being individually

deployed once. To enhance code legibility, I advise that there is further partitioning of each

logic function into clearly delineated sections, separated either by comments or strategic

31

Figure 3.7: Singleton contract for paying cash settlement amounts. As is visible, the
different sections of the functions are written and separated, for readability in a printed
format.

spacing:

1. Object Initializations and Data Retrieval

In this initial phase, third–party contracts that are pertinent to the function are

initiated. Using the confirmation Smart Contract address, the confirmation Smart

Contract itself is also initialized through its interface. This segment is dedicated

to fetching the required data for the function’s operation, deriving it from various

sources, whether they are other third–party contracts, Oracles, or stored variables

from a trustworthy entity.

2. Requirements Definition

This section delineates the preconditions necessary for accessing the agreement’s

logic. It essentially establishes the ‘gates’ that control access, reflecting the con-

tractual conditions, constraints, or prerequisites. Examples of requirements might

include validation that the caller is either the ‘buyer’ or ‘seller’ or a check that the

confirmation contract is not in the ‘terminated’ state. Thus, these requirements act

as essential filters and need meticulous understanding to ensure that they correctly

correspond to the logical state within the smart confirmation contract.

3. Logic Body

32

Building on the requirements, this part of the contract encapsulates the core logic

or ‘substance’ of the function. It’s here that the function’s primary actions are ex-

ecuted, aligning with the natural language description provided in the definitions

document. Whether it involves interacting with third–party contracts, conducting

financial transactions, or setting or modifying variables, this section operationalizes

the intended logic, executing the necessary steps. The Logic Body can be in align-

ment with the standardized representations of functions put forth in the Common

Domain Model.

4. The Setting of The Smart Confirmation Contract’s Logic State

The final section is committed to recording or updating the state of the Smart Confir-

mation Contract in accordance with the logic executed. Unlike the earlier mention of

this section, this is where the outcomes of the function’s actions are formalized within

the contract’s logic state. It may include setting flags, updating status variables, or

any other alterations reflecting the conclusion of the logic module’s operation.

Further, standardization can follow through from the aforementioned Digital Asset

Definitions. Indeed, one can create Logic Modules for each of the disruption clauses:

Forking, Hedging, Change in Law, and Price Source Disruption. Within the price source

disruption, I implement a price–source fallback mechanism, where the price–source de-

termining party can raise a disruption and then change the price source to the next one

in sequence — in practice changing the Chainlink address to a new price feed. Such a

document is defined below in the Linklaters Internal Model fashion.

3.1.6 Representing A Derivative Lifecycle As Stacks of Logic Mod-

ules

In the proposed architecture, the lifecycle of a derivative contract is represented as a stack

of logic modules, each governed by the overarching ‘Logic State’.

For instance, one party may opt for a specialized signing logic module that leverages

Oracle services to invoke specific APIs, thereby generating off–chain fallback events. Con-

versely, another party may prefer the traditional route of using cryptographic signatures

via their private key to confirm the contract.

Additionally, the system allows for customization based on particular product specifi-

cations. Should a party wish to have the contractual option to invoke termination due to

a change–in–law event, they can incorporate a Logic Module termed ‘ChangeInLaw.sol’

in this context that would alter the state variable ‘terminated’. Parties can select from

a range of available implementations, contingent on their understanding of the nuanced

differences each option presents, and available for bespoke customisation (like that of the

Schedules purpose) by legal and computer science experts.

33

F
ig
u
re

3
.8
:

T
h
e
S
m
ar
t
C
on

tr
ac
t
L
o
gi
c
S
ta
te

en
ab

le
s
d
iff
er
en
t
lo
gi
c
m
o
d
u
le
s,
b
as
ed

u
p
on

w
h
ic
h
b
o
ol
ea
n
va
lu
es

of
th
e
L
og

ic
S
ta
te

ar
e
en

ab
le
d
or

d
is
ab

le
d
—

th
e
li
fe
cy
cl
e.

T
h
e
L
o
gi
cS

ta
te

ty
p
e
is
st
or
ed

w
it
h
in

th
e
S
m
ar
t
C
on

fi
rm

at
io
n
co
n
tr
ac
t.

E
ac
h
L
og

ic
M
o
d
u
le

ca
n
b
e
‘m

ix
ed

an
d
m
at
ch
ed

’
at

th
e
d
is
cr
et
io
n
o
f
th
e
p
ar
ti
es
.
O
ve
r
ti
m
e,

th
e
st
ac
k
is

tr
av
er
se
d
fr
om

to
p
to

b
ot
to
m
.

34

As illustrated in Figure 3.8, the contract’s logic flow is sequential and hierarchical.

Initially, the system verifies the state variable ‘terminated’. If it returns as false, the

next tier of logic modules related to disruption events is enabled. Furthermore, when

either the buyer or the seller is signed, their corresponding logic modules are activated

in succession. Hence, the logic flow within the Smart Derivative Contract is inherently

ordered and determined by the status of the Logic State stored in the Smart Confirmation

Contract.

Upon initiating a Smart Confirmation Contract, the architect chooses the foundational

LogicState schema. This schema serves as a skeletal framework to which specific modules

can be appended. While some implementations may require only simple functionalities,

such as cryptographic signatures, others may necessitate a more comprehensive set of

operations, encompassing not only signature verification but also asset transfer and notice

delivery.

3.1.7 Building and Bridging CDM Functions to Digital Asset Defi-

nition Logic Modules

Figure 3.9: A CDM type called ‘YearFraction’, in which calculates the proportion of the
year that has passed, based on the specified period standard (derived from the enumera-
tion).

The CDM is in the vast majority defined in data type structures. However, there is

a set of functions used for the standardization of calculations. For example, Figure 3.9

displays a Rosetta function used to calculate the fraction of the year that has passed — a

task useful in pricing and swap calculations.

Taking such functional standardization further, one can implement a CDM function

for implementing Smart Contract logic — specifically, the logic put forth in any ISDA

definitions product. I take for example the aforementioned Digital Asset Definitions —

a contextually appropriate definition document — which delineates how fallbacks should

occur upon a price source disruption being raised. Indeed, if elected and raised the price

source disruption changes to a settlement price source, and upon not finding one goes to

35

F
ig
u
re

3
.1
0:

T
h
is

fi
gu

re
d
is
p
la
y
s
th
e
lo
gi
c
ex
p
la
in
ed

w
it
h
in

th
e
d
ig
it
al

as
se
t
d
efi

n
it
io
n
s,

co
m
p
ar
ed

ag
ai
n
st

it
s
in
te
rp
re
te
d
R
os
et
ta

C
D
M

L
og

ic
M
o
d
u
le

co
n
tr
ac
t
a
n
d
th
e
su
b
se
q
u
en
t
S
ol
id
it
y
L
og

ic
M
o
d
u
le
.

36

termination. If not terminated the Calculation Agent is signaled to become involved, to

change the financial parameters to fairly represent the change.

Figure 3.10 shows the simplified reflection of the Digital Assets disruption clause in

Rosetta, before the subsequent translation to a Solidity Logic Module. Such a process

proves the ability of lawyers to start the Smart Contract production pipeline, and sub-

sequently for computer scientists to interpret and produce the relevant Smart Contract

Code for execution.

3.2 First and Second Order Periphery

In the proposed architecture, a standardizing body like ISDA would deploy a set of Logic

Modules along with the Master Agreement onto a blockchain platform. Parties engaging

in OTC derivatives trading would converse with ISDA to formulate a Smart Confirma-

tion Contract, which would be conditioned by the Common Domain Model (CDM). This

contract specifies the necessary Logic Modules and the Logic State governing the transac-

tional lifecycle and its trade. For enhanced customization, parties can append a natural

language schedule that supersedes specific terms in the Master Agreement. One further

cites the product definitions pertinent to the particular trade. The Smart Confirmation

Contract, Logic Modules, natural language contracts, and directly implicated data, would

constitute what is termed the ‘first–order periphery’ (presented in Figure 3.11).

Beyond the bounds of this first–order periphery lies a ‘second–order periphery’, which

comprises Smart Contracts, Oracles and data not immediately stored or referenced in

the Smart Confirmation Contract. This could include, for instance, ChainLink Smart

Contracts that serve as Oracles, ERC–20 tokens for collateral or payments, and external

collateral management contracts for risk mitigation.

Apart from indirectly influencing them through the selection of first–order Logic Mod-

ules, parties do not exercise direct authority over the second–order periphery. This domain

is under the control of a third–party entity. Both cyber risk and the potential for trans-

action failure are risks that these parties entrust to these third–party — and should be

carefully overviewed, with many fallbacks in place for their malfunctions.

3.3 An Ecosystem of Smart Confirmation Contract Deriva-

tives

In an illustrative example shown in Figure 3.12, two distinct Smart Confirmation Contracts

— a Non–Deliverable Call and a Non–Deliverable Forward — share the Master Agreement

and select logic modules. Additionally, some of these logic modules interact with elements

in the second–order periphery, illustrating the possibility of a complex interplay between

centralized standardization and decentralized financial instruments.

37

F
ig
u
re

3
.1
1:

S
em

a
n
ti
ca
ll
y,

T
h
e
fl
at

cu
b
oi
d
s
re
p
re
se
n
t
S
m
ar
t
L
og

ic
C
on

tr
ac
ts
.

T
h
e
ta
ll
er

fl
at

cu
b
oi
d
re
p
re
se
n
ts

an
E
R
C
–2

0
st
ab

le
co
in

li
ke

U
S
D
C
.
T
h
e
b
la
n
k
cy
li
n
d
er

re
p
re
se
n
ts

a
N
at
u
ra
l
L
an

gu
ag

e
d
o
cu

m
en
t.

T
h
e
d
ou

b
le
–s
tr
ip
ed

cy
li
n
d
er

re
p
re
se
n
ts

O
ra
cl
e
S
m
ar
t
C
on

tr
ac
ts
.

T
h
e

S
m
ar
t
C
o
n
fi
rm

a
ti
o
n
C
on

tr
a
ct

(C
u
b
e)

li
es

in
th
e
m
id
d
le
,
su
rr
ou

n
d
ed

b
y
it
s
L
og

ic
M
o
d
u
le
s
an

d
th
e
N
at
u
ra
l
L
an

gu
ag

e
C
on

tr
ac
ts

it
re
fe
re
n
ce
s.

F
ir
st
–o

rd
er

p
er
ip
h
er
y
ar
e
co
n
tr
a
ct
s
ab

le
to

al
te
r
th
e
S
m
ar
t
C
on

fi
rm

at
io
n
C
on

tr
ac
t.

S
ec
on

d
-o
rd
er

p
er
ip
h
er
y
ar
e
th
e
co
n
tr
ac
ts

u
n
ab

le
to

al
te
r
th
e

co
n
fi
rm

a
ti
o
n
co
n
tr
ac
t
an

d
in
te
ra
ct

w
it
h
th
ro
u
gh

th
e
fi
rs
t–
or
d
er

p
er
ip
h
er
y
—

li
ke

th
at

of
ex
te
rn
al

E
R
C
–2

0
to
ke
n
s.

38

In the transition to a blockchain–based ecosystem, a complete overhaul is not oblig-

atory. Participants may opt for an incremental integration, initially choosing to focus

on specific elements of the Logic State process. For example, they could commence by

cryptographically signing natural language documents to ensure data integrity — such an

application would only require a Smart Confirmation Contract, a reference to the natural

language contract, and a single Logic Module responsible for signing. Alternatively, one

may desire the emission of event notifications on a Smart Contract, thereby achieving

immutability and transparency, akin to an improved notice–delivery process. Moreover,

the modular architecture allows parties to select a ‘transfer’ module that orchestrates

off–chain transactions. This mitigates the cyber risk associated with the most security–

sensitive components of a derivative.

In summary, this proposal serves as a pivotal stepping stone for integrating the Com-

mon Domain Model into an ecosystem of legally compliant Smart Contract building blocks.

These contracts are verified by legal experts and constructed by computer scientists. Fea-

turing amendable parameters, immutable records, and transparent processes, this new

framework constitutes a Pareto improvement over today’s settlement and contract man-

agement systems.

39

F
ig
u
re

3
.1
2:

S
em

a
n
ti
ca
ll
y,

T
h
e
fl
at

cu
b
oi
d
s
re
p
re
se
n
t
S
m
ar
t
L
og

ic
C
on

tr
ac
ts
.

T
h
e
ta
ll
er

fl
at

cu
b
oi
d
re
p
re
se
n
ts

an
E
R
C
–2

0
st
ab

le
co
in

li
ke

U
S
D
C
.
T
h
e
b
la
n
k
cy
li
n
d
er

re
p
re
se
n
ts

a
N
at
u
ra
l
L
an

gu
ag

e
d
o
cu

m
en
t.

T
h
e
d
ou

b
le
–s
tr
ip
ed

cy
li
n
d
er

re
p
re
se
n
ts

O
ra
cl
e
S
m
ar
t
C
on

tr
ac
ts
.

T
h
e

S
m
ar
t
C
on

fi
rm

a
ti
o
n
C
o
n
tr
ac
ts

(C
u
b
es
)
li
e
in

th
e
m
id
d
le
,
su
rr
ou

n
d
ed

b
y
th
ei
r
L
og

ic
M
o
d
u
le
s
an

d
th
e
N
at
u
ra
l
L
an

gu
ag

e
co
n
tr
ac
ts

th
ey

re
fe
re
n
ce
.

D
iff
er
en
t
S
m
ar
t
C
o
n
fi
rm

a
ti
o
n
C
o
n
tr
ac
ts

ca
n
in
te
ra
ct

w
it
h
th
e
sa
m
e
L
og

ic
M
o
d
u
le
s
an

d
ca
n
re
fe
re
n
ce

th
e
sa
m
e
n
at
u
ra
l
la
n
gu

ag
e
co
n
tr
ac
ts
.
E
ac
h

S
m
ar
t
C
o
n
fi
rm

at
io
n
C
on

tr
a
ct

w
il
l
b
y
p
ro
x
y
sh
ar
e
th
e
sa
m
e
se
co
n
d
–o

rd
er

p
er
ip
h
er
y.

40

Chapter 4

Results, Caveats, and Discussion

In this chapter, I elaborate on the process of constructing the Modular CDM Smart Con-

tracts, Logic Module Smart Contracts, and Smart Confirmation Contracts. These com-

ponents form the architectural backbone for the ensuing implementation. A decentralized

application (dApp) is then developed1, utilizing Digital Asset Definitions to instantiate

financial derivatives such as non–deliverable forwards, calls, and puts. This chapter serves

to scrutinize the various considerations and challenges and concludes with an evaluative

discussion of the methodology’s overall feasibility.

4.1 Problematic CDM translation

Although the CDM–type modules were produced and operational, they are in many ways

problematic in their construction.

4.1.1 Enumeration Too Large

In the translation of the TypeScript implementation of the Common Domain Model

(CDM) to Solidity, a bottleneck arises due to the FloatingRateIndexEnum enumeration

exceeding Solidity’s limitation of 256 elements. Two remedies are available:

1The dApp development employs a web application stack:

1. NextJS: A React-based framework optimized for server-rendering, static site generation, and per-
formant client-side rendering.

2. Wagmi: A specialized Web3 utility library designed to simplify interactions with blockchain assets.

3. Bootstrap: A front-end framework for rapid UI development, providing pre-built, responsive design
components.

4. ChatGPT’s API: Utilized for natural language processing capabilities within the application’s
user interface.

5. ethers.js: A lightweight pure JavaScript library to interact with the Ethereum blockchain.

6. web3.js: A collection of libraries that enable interaction with a local or remote Ethereum node
using HTTP, IPC, or WebSocket.

41

1. Refactor the Rosetta CDM to introduce a bifurcated structure, creating Floatin-

gRateIndexEnum1 and FloatingRateIndexEnum2, each containing up to 256 fields.

Upon more than 512 fields being needed, one would create FloatingRateIndexEnum3.

2. Employ a pruning strategy that retains only the 256 most commonly used fields

within the existing FloatingRateIndexEnum, necessitating periodic updates for dep-

recated or less–used fields.

The first strategy, despite introducing a significant alteration in the existing CDM,

offers a more stable and extensible solution and is therefore selected for implementation.

This approach avoids the dynamic nature of periodically updating the enum list, which

could induce additional complexities. Importantly, this modification has no adverse impact

on the current CDM modules in use, thus mitigating transitional friction.

4.1.2 Recursive Type Structure

Figure 4.1: A directed tree structure displaying how the CDM data types loop back on
themself in a recursive manner. The account has the sub–type of party reference, which
has the sub–type of account. This must be dealt with when considering Smart Contract
creation.

In the process of translating the Common Domain Model (CDM) to Solidity, a specific

issue arises due to the recursive nature of some CDM types (shown in Figure 4.1). While

this design is permissible in TypeScript, it becomes problematic in Solidity, which requires

the initialization of all optional fields, even if to null values. This theoretically demands

infinite storage space and an unbounded amount of Ethereum gas for initialization.

Several solutions exist to address this issue. One option is to flatten the recursive struc-

tures, and linearize the data model, although this would deviate from the original CDM

architecture and make the CDM implementation redundant. Another option involves im-

plementing a pointer–based system that tracks initialized instances of recursive types, thus

eliminating the need for redundant storage but at a great cost of added complexity.

The best strategy entails inclusion of only those fields that are required for the down-

stream CDM modules. I remove types that do not contribute to the functionality of the

42

specific implementation, this approach sidesteps the recursive issue without inflating stor-

age or gas costs. For example, inside the Account type, if the accountNumber field is

redundant from implementation, I cut it from the created module. This method further

preserves the core integrity of the CDM while aligning with Solidity’s constraints, making

it a compromise between structure and computational efficiency.

4.1.3 Addition of Non–Rosetta Types

Solidity, unlike general–purpose programming languages such as Java and Python, is spe-

cialized for blockchain–specific use cases due to its Ethereum Virtual Machine compatibil-

ity. This limits its type system, necessitating unique types like ‘address’ which don’t have

direct analogues in standard programming languages. Consequently, types that would be

optimally denoted as ‘address’ — such as ‘LEI’ — must be typed as ‘string’ to maintain

compatibility.

To accommodate Ethereum–specific scenarios, fields like ‘ethAddress’ are introduced

to specify entities like Buyers and Sellers within the Smart Contract environment. Ad-

ditionally, cryptographic signing fields labeled ‘signed’ are incorporated into the types

‘Sellr’ and ‘Buyr’. Although these fields could add complexity to the general CDM, their

inclusion enhances Smart Contract compatibility.

Moreover, the term ‘reference’ — a commonly used type within CDM distributions —

conflicts with a reserved keyword in Solidity. To resolve this, the type is renamed to ‘ref’.

Operational enhancements are also integrated to bridge the gap between Solidity

and the Rosetta CDM. Fields such as ‘ethValuationTimeDate’ are added to rectify the

mismatch between Solidity’s milliseconds–since–epoch time format and Rosetta CDM’s

string–represented dates. Additional operational fields, like ‘priceSourceEthAddress’ and

‘currencyEthAddress’, are introduced to facilitate functionalities such as Chainlink Oracle

integration and base currency specification via Ethereum addresses.

4.1.4 Storage Inefficiency in CDM and its Impact on Smart Deriva-

tives Contracts

The use of the Common Domain Model (CDM) introduces notable computational overhead

due to its data type architecture. Specifically, when one looks at the definition of a

Multiplier in a conventional Smart Contract, it is typically represented simply as an int256.

This occupies a single storage slot on the blockchain, optimizing storage and computational

resources.

Contrastingly, the CDM complicates this straightforward representation by requiring

a hierarchical nesting of data types. In the CDM, a Multiplier isn’t just an int256 — it

becomes part of a broader construct referred to as CashSettlementAmount. This variable

is, in turn, nested within another data structure called CashSettlementTerms. CashSet-

43

tlementTerms relies on yet another data structure, Money, which itself is contingent on

Measure, which has the desired field value. Only then do we reach a point where an int256

variable is finally declared and utilized for storing the multiplier’s value.

Each of these nested data types requires its own storage slot on the blockchain, cumu-

latively summing up to five separate storage slots just to represent what could otherwise

be stored in a single slot. This design choice exacerbates storage costs and imposes a

computational burden when navigating through these layers of abstraction to access the

multiplier value.

In the realm of smart derivatives contracts, where readability is a paramount concern,

the structural inefficiencies inherent in the CDM’s design could be detrimental. As these

contracts escalate in complexity and nuance, the accumulated storage and computational

costs associated with this intricate data structuring could impede both performance and

affordability. Specifically, the escalating expenses related to contract deployment may

become prohibitively high, undermining the feasibility of using blockchain technologies for

these financial instruments.

Consequently, for the CDM to sustain long–term viability in the sphere of decentralized

finance, two paths present themselves: either a reevaluation of its current architecture is

undertaken, or a streamlined version must be adopted to mitigate such inefficiencies.

4.2 Stabilizing Cash Settlement Amounts in EVM Smart

Contracts

In the Ethereum Virtual Machine (EVM), Smart Contracts are unable to self–execute or

defer state changes. This constraint is attributable to the volatility of future gas expen-

diture and the dynamic nature of the blockchain. As such, the automation of on–chain

digital asset transfers upon reaching a predefined valuation date necessitates third–party

involvement. As an alternative, one has one of the two alternative design choices, that

either:

1. One of the counterparties takes responsibility for initiating the agreed–upon cash

settlement upon reaching the valuation date.

2. The architectural framework includes a provision that permits either party to ‘lock

in’ or ‘freeze’ the cash settlement amount at any point after the valuation date.

Mathematically, one can let tv be the valuation date, and T be the current time such

that T > tv implies the valuation date has passed and T < tv indicates the valuation

date lies in the future. Letting the Chainlink Price P (t) be a function of time t, and the

Forward Price F be a fixed value, then the Cash Settlement Amount A(t) can be expressed

as:

44

A(t) = P (t)− F, t ≥ tv

I introduce a binary indicator variable α such that α = 1 if the Cash Settlement

Amount has been ’locked in’ or ’frozen’, and α = 0 otherwise. This leads to the following

piecewise function for the Forward Cash Settlement Amount A∗(t):

A∗(t) =

P (t)− F if α = 0 and t ≥ tv

A(tfreeze) if α = 1

Where tfreeze is the time when α transitions from 0 to 1, indicating that the Cash

Settlement Amount has been ‘locked in’ or ‘frozen’.

This situation provides a dilemma. If a party encounters difficulties or neglects to

‘freeze’ the cash settlement amount, the Forward Cash Settlement Amount remains vul-

nerable to variations over time. Such instability introduces elements of risk and unpre-

dictability that counter the foundational aims of financial derivatives structure in Smart

Contracts. One may be able to outsource this risk to a third party agent, who is given

permission to make the transfer or freeze at tv or can take the risk on themself.

From a different perspective, this unpredictability is an inevitable feature, given that,

within the current architecture of peer–to–peer and trustless Smart Contracts2, no viable

alternatives exist to avoid this limitation.

4.3 Architecture of a Comprehensive Decentralised Web

Application for Smart Confirmation Contracts

To facilitate interaction with Smart Confirmation Contracts, I engineer a decentralized

web application on the Sepolia EVM testnet blockchain. This platform’s operation is

only reliant on its connectivity to an Ethereum Virtual Machine–compatible blockchain.

It supports the creation of a diverse range of financial derivatives, including but not

limited to Put, Call, and Forward options. Users have the flexibility to define disruption

parameters, aligning with the Digital Asset Definitions.

4.3.1 User Interface: Contract Template Selection and Customiza-

tion

The web application’s initiation page, shown in Figure 4.2, provides a user interface that

is divided into two sections. The left pane serves as a repository of pre–configured Smart

2Upon loosening the requirement of trustlessness, one could invite an oracle to message the Smart
Contract upon the valuation date — freezing at the correct time. Both parties must entirely trust this
third party, and the additional risks and legal complications of the third party being ineffective in their
task must be considered.

45

Contract templates. A future improvement would involve the incorporation of a modular

assembly feature, extending upon the ISDA Create web application to enable users to con-

struct custom contracts through the combination of different Logic Modules and natural

language contracts. Once a template is chosen, the platform directs the user to an Interna-

tional Swaps and Derivatives Association (ISDA)–aligned interface for the customization

of the Smart Confirmation Contract.

4.3.2 User Interface: ISDA–Compliant Input Form

The right pane of the application serves as an intuitive input interface. The layout is

deliberately modelled to resemble traditional ISDA confirmation contracts, aimed at sim-

plifying the onboarding process for legal professionals who may lack blockchain familiarity,

reducing barriers to adoption.

4.3.3 Smart Contract Compilation and Transaction Initiation

Upon clicking the ‘Create Contract’ button, the application triggers two sequential oper-

ations: the compilation of the Smart Contract’s bytecode within the Smart Confirmation

Contracts factory3, and the initiation of a corresponding blockchain transaction. This

operation assumes the existence of a browser extension capable of Web3 interaction. The

integration of a specialized Software Development Kit (SDK) is under consideration to

further optimize this process — and allow for external scripts to interact with the proto-

col.

4.3.4 Contract Monitoring

For each Smart Confirmation Contract, a unique web page is dynamically generated

and indexed via its blockchain address. For example, the contract written to the ad-

dress ’0xBdC703C9459c3680f777335E72e05DbAb4718eB2’ would be found under /con-

tract/0xBdC703C9459c3680f777335E72e05DbAb4718eB2. Such a decision also enables

users to access each contract via a QR code, which, if printed onto a natural language

document allows for instant access to the smart confirmation contract that underpins it.

4.3.5 Contract Interaction

With a Web3 wallet [51], users can fully interact with the Logic Modules, to fulfill the

transactional obligations in the agreement. Indeed, they can call any function, emit any

event, and make any transaction.

3A Smart Contract Factory is a ‘wrapper’ contract around a Smart Contract, that when messaged
produces a pre–specified Smart Contract from a template.

46

4.3.6 Event History and User Interactivity

The application provides a comprehensive history log that captures all emitted contract

events, offering users insights into contract creation, signing, and any subsequent disrup-

tion events. If given permission in the General Terms, the participants can choose to

raise the applicable events specified in the Logic Modules. These events are stored on

the blockchain permanently, allowing for transparency for auditors who desire to see the

transaction lifecycle of the contract.

4.3.7 AI–Powered Query Handling

The platform offers query capabilities by saving contract history, natural language contract

texts, Smart Contract code, and transaction parameters in memory. This data reservoir

enables the integration of large language models (LLM) to execute precise queries and

offer descriptions of the financial derivatives in question. If the LLM is trained upon legal

data, it can further provide AI–based legal advice for each participant, tailored completely

with an entire knowledge of the ecosystem and the contract in question.

However, Language Models like LLMs are susceptible to generating hallucinatory in-

formation, and their utility in giving legal or financial advice remains limited due to their

lack of credibility. Nevertheless, for rudimentary queries, such models can offer valuable

insights.

4.4 Areas for Enhancement

4.4.1 Optimization of Time–series Retrieval

Chainlink typically updates price feeds at 30–minute intervals, generating a substantial

volume of data over extended periods. The retrieval of 200 rounds of such data necessitates

a considerable number of HTTP requests to the associated Web3 RPC. This intensity,

both computational and bandwidth–related, presents an opportunity for optimization.

Algorithms to fetch and store data in a more efficient manner could be investigated to

alleviate this bottleneck.

4.4.2 Event–based Data Retrieval Constraints

Direct user interaction with the blockchain for data retrieval poses specific challenges.

Notably, events emitted by Smart Contracts are not stored within the contracts themselves.

Instead, a burdensome process ensues, requiring traversal and filtering through each block

to identify emitted events that correlate with the specified Smart Contract. This operation

is computationally expensive and time–consuming. Employing an archive node could

47

F
ig
u
re

4.
2:

S
m
a
rt

C
on

fi
rm

at
io
n
C
on

tr
ac
t
cr
ea
ti
on

w
eb

p
ag

e.
O
n
th
e
le
ft

d
is
p
la
y
s
a
p
an

el
to

ch
o
os
e
th
e
S
m
ar
t
C
on

fi
rm

at
io
n
C
on

tr
ac
t
te
m
p
la
te

th
a
t
is
d
es
ir
ed

.
O
n
th
e
ri
gh

t
d
is
p
la
y
s
th
e
co
n
fi
rm

at
io
n
ge
n
er
al

te
rm

s
an

d
p
ar
am

et
er
s,
re
le
va
n
t
to

th
e
cr
ea
ti
on

of
th
e
S
m
ar
t
C
on

fi
rm

at
io
n
C
on

tr
ac
t.

48

F
ig
u
re

4.
3:

T
h
e
S
m
ar
t
C
on

fi
rm

a
ti
o
n
C
on

tr
ac
t
w
eb

p
ag

e
p
re
se
n
ts

re
al
–t
im

e
d
at
a
an

d
in
te
ra
ct
iv
e
fu
n
ct
io
n
al
it
ie
s
fo
r
th
e
co
n
tr
ac
t’
s
op

er
at
io
n
.
T
h
e

in
te
rf
ac
e
fe
at
u
re
s
a
gr
ap

h
ic
al

re
p
re
se
n
ta
ti
on

of
p
ri
ce

ti
m
e–
se
ri
es

d
at
a,

al
on

gs
id
e
ac
ti
on

ab
le

op
ti
on

s
th
at

al
lo
w

u
se
rs

to
si
gn

,
fr
ee
ze
,
an

d
tr
an

sf
er

as
se
ts
.
A
d
d
it
io
n
al
ly
,
a
h
is
to
ri
ca
l
lo
g
o
f
em

it
te
d
ev
en
ts

is
d
is
p
la
y
ed

fo
r
co
m
p
re
h
en

si
ve

co
n
tr
ac
t
au

d
it
in
g.

T
o
u
n
iq
u
el
y
id
en
ti
fy

an
d
ac
ce
ss

th
is

S
m
ar
t
C
o
n
fi
rm

at
io
n
C
on

tr
a
ct
,
a
Q
R

co
d
e
is

st
ra
te
gi
ca
ll
y
p
os
it
io
n
ed

in
th
e
u
p
p
er

ri
gh

t
co
rn
er
.

49

F
ig
u
re

4
.4
:

T
h
is
in
te
rf
a
ce

p
ro
v
id
es

u
se
rs

w
it
h
re
al
–t
im

e
in
si
gh

ts
in
to

b
ot
h
th
e
ge
n
er
al

te
rm

s
an

d
th
e
lo
gi
ca
l
st
at
e
of

th
e
ag

re
em

en
t.

B
y
in
vo
k
in
g

th
e
b
lo
ck
ch
ai
n
’s
re
ad

m
et
h
o
d
s
a
t
ea
ch

b
lo
ck

in
te
rv
al
,
th
e
p
la
tf
or
m

gu
ar
an

te
es

th
at

th
e
d
is
p
la
ye
d
va
lu
es

re
m
ai
n
co
n
si
st
en
tl
y
u
p
d
at
ed

an
d
ac
cu

ra
te
.

50

F
ig
u
re

4
.5
:

T
h
is

in
te
rf
a
ce

se
rv
es

fo
r
re
al
–t
im

e
d
at
a
q
u
er
ie
s
to

th
e
S
m
ar
t
C
on

fi
rm

at
io
n
C
on

tr
ac
t.

L
iv
e
d
at
a
is

ex
tr
ac
te
d
an

d
tr
an

sm
it
te
d
to

th
e

A
I
ch
a
tb
o
t’
s
A
P
I,
en

su
ri
n
g
im

m
ed

ia
te

an
d
ac
cu

ra
te

in
fo
rm

at
io
n
is

ex
p
la
in
ed

.

51

expedite this process considerably, albeit at the cost of integrating an additional API into

the production pipeline.

Moreover, it is feasible to architect an off–chain Oracle designed to autonomously

trigger upon reaching a predetermined valuation date and fetch the corresponding price

— though the design and implementation of such an Oracle are outside the scope of this

dissertation.

4.4.3 Considerations for Natural Language Contract Storage

The current architecture of the web application elects to store natural language contracts

on the server for client–side viewing. An alternative approach would involve storing these

contracts directly on the Ethereum blockchain as byte data, allowing for client–side con-

struction. However, Ethereum’s current storage constraints — limiting each block to

approximately 0.02 MB of data — render this solution financially and operationally im-

practicable. Future expansions in Ethereum’s block size could mitigate this constraint.

4.4.4 General Improvements and Trustworthiness

Addressing the bottlenecks and limitations can create enhancements in the web applica-

tion’s performance, scalability, and user experience. Beyond these technical improvements,

the implementation of auditing protocols for both the Smart Contracts and the web ap-

plication’s codebase is extremely important. Such audits not only identify vulnerabilities

and inefficiencies but also contribute to the platform’s credibility. The totality of these

improvements would position the platform as a robust, trusted, and market–ready solu-

tion.

52

Chapter 5

Conclusion

5.1 Summary of Key Findings

This thesis presents a comprehensive architecture for Smart Confirmation Contracts,

aimed at reengineering the contractual frameworks established by the International Swaps

and Derivatives Association. The architecture is implemented as a fully functional Web3

decentralized application. It incorporates key ISDA components such as the Digital Asset

Definitions, Common Domain Model, and the Master Agreement framework. The re-

search also delves into the standardization of data types, functions, and the incorporation

of ‘internal’ natural language contracts, thereby offering a robust and flexible solution for

Smart Legal Contracts in the derivatives market.

5.2 Theoretical and Practical Implications

5.2.1 Theoretical Implications

The research raises theoretical questions, particularly concerning the hierarchical relation-

ships within the Smart Confirmation Contract. For example, it prompts an inquiry into

the precedence of Logic Module natural language explanations over those found in the

Schedule or Product Definitions. Such an inquiry opens up a discourse on the necessity

and sufficiency of natural language explanations within the Internal Model Logic Modules.

Could these explanations alone provide the required contractual nuance for contractual

obligations, thereby eliminating the need for external natural language documents alto-

gether? One may question if the Master Agreement could be replaced in its entirety by

Logic Modules.

53

5.2.2 Practical Implications

From a practical standpoint, the architecture facilitates a gradual transition to Smart

Legal Contracts. It offers a modular approach, allowing market participants to selectively

adopt Logic Modules based on their comfort level and the extent of standardization. This

phased adoption approach minimizes the risks inherent in a complete transition to Smart

Contracts. It promotes participation and fosters trust within the financial ecosystem.

This strategy also allows for the observational learning of market participants, as late

adopters can witness the successes and improvements experienced by their market peers

before making the transition themself. In fact, it is plausible that small to medium-sized

enterprises (SMEs) may be the early adopters of Smart Confirmation Contracts, preceding

larger financial institutions in adoption.

Both the theoretical and practical implications of this research contribute to the on-

going discourse in computational finance, smart contracts, and decentralized technologies.

They offer avenues for further exploration and refinement, setting the stage for future

research endeavors.

5.3 Limitations and Caveats

The existing implementation has its shortcomings, notably the need to truncate the Com-

mon Domain Model to comply with the Ethereum Virtual Machine’s storage constraints.

An optimal solution would involve the development of a bespoke data type standard tai-

lored for Smart Contracts, perhaps a CDM–Light, which would align with existing ERC

standards. This could entail the standardization of even rudimentary types like price and

buyer, restricting them to a single level of nesting for storage efficiency and readability.

In terms of the application itself, there are areas for enhancement, particularly in the

retrieval of historical event emissions. Additionally, the architecture could benefit from a

more robust pipeline that enables comprehensive customization of Logic Module stacks.

Rigorous testing and typing of all NextJS components are required, with the required

quality assurance standards for contemporary web applications.

5.4 Regulatory and Policy Implications

As of the current analysis, a notable recent policy recommendation comes from the DeFi

Working Group within the International Organization of Securities Commissions (IOSCO),

spearheaded by personnel from the U.S. Securities and Exchange Commission. The group

proposes that in the foreseeable future,

“Further moves toward standardization across DeFi data sets and codebases

could assist regulators in understanding and assessing DeFi arrangements and

54

activities.”1[52].

Should such standardization materialize, Logic Modules emerge as a viable solution due

to their self-contained architecture and print-friendly readability, enabling regulators to

swiftly scrutinize the intrinsic functionalities of financial derivatives, accompanied by their

textual clarifications to mitigate vagueness in their interpretation. Moreover, the adoption

of a uniform data type model such as the Common Domain Model would ensure that

DeFi datasets adhere to consistent variable naming conventions, streamlining regulatory

oversight.

5.5 Final Remarks

In conclusion, this thesis has presented the groundwork for a transformative approach to

financial derivatives contracts through the development and implementation of Smart Con-

firmation Contracts. By leveraging Web3 technologies and integrating key ISDA frame-

works, the research has not only demonstrated the feasibility of such contracts but also

addressed issues related to standardization, modularity, and regulatory compliance.

1Decentralized Finance (DeFi) refers to a blockchain-enabled financial infrastructure that obviates the
need for intermediaries by employing smart contracts for peer-to-peer transactional activities.

55

Appendix A

code

A.1 Code listing

The code for this thesis is extensive — covering thousands of lines over multiple intercon-

nected files. For this reason, I have attached two .zip compressed folders. The first, called

ISDAPROTOCOL includes the Smart Confirmation Contract inside the NF folder — and

further includes the logic modules inside the LOGICMODULES folder. The translation

scripts of the CDM exist withing the cdm/typescript folder.

I have further attached a .zip file for the Web Application, called ISDAWEBAPP. The

associated hooks, pages, and assets align with the NextJS standard. On request I can

provide GitHub repository access to any code required.

A.2 Project Summary

• Project Title: Smart Confirmation Contracts: An Architecture for ISDA Smart

Contracts

• Project Topic: ISDA Smart Contracts

• Industrial Supervisor: Ciaran McGonagle

• Team Member: Finn Casey Fierro, ucabfc2@ucl.ac.uk

• Description: Implementation of a Smart Contract Architecture for ISDA

• Own Contribution: Entirety of work

56

Bibliography

[1] International Swaps and Derivatives Association, “User’s guide to

the 2002 isda master agreement,” 2003. [Online]. Available: https:

//www.rbccm.com/assets/rbccm/docs/legal/doddfrank/Documents/ISDALibrary/

Users%20Guide%20to%20the%202002%20ISDA%20Master%20Agreement.pdf

[2] C. M. McNamara and A. Metrick, “The lehman brothers bankruptcy f:

Introduction to the isda master agreement,” Journal of Financial Crises, vol. 1,

no. 1, pp. 137–150, 2019. [Online]. Available: https://elischolar.library.yale.edu/

journal-of-financial-crises/vol1/iss1/7

[3] “Blockchain technology in financial services: a comprehensive review of...”

Journal of Governance and Sustainability, 2020. [Online]. Available: https:

//www.emerald.com/insight/content/doi/10.1108/JGOSS-07-2020-0039/full/html

[4] C. D. Clack, “Design discussion on the isda common domain model,” arXiv preprint

arXiv:1711.10964, 2017, subjects: Software Engineering (cs.SE). [Online]. Available:

https://doi.org/10.48550/arXiv.1711.10964

[5] “Chainlink 2.0: Next steps in the evolution of decentralized oracle networks,” 2020.

[Online]. Available: https://research.chain.link/whitepaper-v2.pdf

[6] “Web3 building blocks: A primer for assembling a web3 toolkit,” 2021, discusses

the role of Web3 providers like MetaMask and JSON RPC providers in connecting

to the Ethereum network. [Online]. Available: https://www.hobbsco.de/blog/web3/

web3-providers-explained

[7] D. Chaum, “Blind signatures for untraceable payments,” Advances in Cryp-

tology, 1983. [Online]. Available: http://www.hit.bme.hu/∼buttyan/courses/

BMEVIHIM219/2009/Chaum.BlindSigForPayment.1982.PDF

[8] H. Finney. (2004) Reusable proofs of work. [Online]. Available: https:

//cryptome.org/rpow.htm

[9] W. Dai. (1998) B-money. [Online]. Available: http://www.weidai.com/bmoney.txt

57

https://www.rbccm.com/assets/rbccm/docs/legal/doddfrank/Documents/ISDALibrary/Users%20Guide%20to%20the%202002%20ISDA%20Master%20Agreement.pdf
https://www.rbccm.com/assets/rbccm/docs/legal/doddfrank/Documents/ISDALibrary/Users%20Guide%20to%20the%202002%20ISDA%20Master%20Agreement.pdf
https://www.rbccm.com/assets/rbccm/docs/legal/doddfrank/Documents/ISDALibrary/Users%20Guide%20to%20the%202002%20ISDA%20Master%20Agreement.pdf
https://elischolar.library.yale.edu/journal-of-financial-crises/vol1/iss1/7
https://elischolar.library.yale.edu/journal-of-financial-crises/vol1/iss1/7
https://www.emerald.com/insight/content/doi/10.1108/JGOSS-07-2020-0039/full/html
https://www.emerald.com/insight/content/doi/10.1108/JGOSS-07-2020-0039/full/html
https://doi.org/10.48550/arXiv.1711.10964
https://research.chain.link/whitepaper-v2.pdf
https://www.hobbsco.de/blog/web3/web3-providers-explained
https://www.hobbsco.de/blog/web3/web3-providers-explained
http://www.hit.bme.hu/~buttyan/courses/BMEVIHIM219/2009/Chaum.BlindSigForPayment.1982.PDF
http://www.hit.bme.hu/~buttyan/courses/BMEVIHIM219/2009/Chaum.BlindSigForPayment.1982.PDF
https://cryptome.org/rpow.htm
https://cryptome.org/rpow.htm
http://www.weidai.com/bmoney.txt

[10] A. Back. (1997, March 28) hash cash postage implementation. Cypherpunks Mailing

List. [Online]. Available: http://www.hashcash.org/papers/announce.txt

[11] R. S. Leslie Lamport and M. Pease, “The byzantine generals problem,” ACM Transac-

tions on Programming Languages and Systems (TOPLAS), vol. 4, no. 3, pp. 228–234,

1982.

[12] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Working Paper,

2008. [Online]. Available: https://bitcoinwhitepaper.co/

[13] N. I. of Standards and Technology, “Fips pub 180-4: Secure hash standard

(shs),” National Institute of Standards and Technology, Tech. Rep., 2015. [Online].

Available: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

[14] J. R. Douceur, “The sybil attack,” in International Workshop on Peer-to-Peer

Systems. Springer, 2002, pp. 251–260. [Online]. Available: https://www.microsoft.

com/en-us/research/publication/the-sybil-attack/?from=http%3A%2F%2Fresearch.

microsoft.com%2Fapps%2Fpubs%2Fdefault.aspx%3Fid%3D74220

[15] R. M. Lee, “A logic model for electronic contracting,” Decision Support Systems,

vol. 4, no. 1, pp. 27–44, 1988. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/0167923688900966

[16] V. Buterin. (2013) Ethereum: A next-generation smart contract and decentralized

application platform. [Online]. Available: https://ethereum.org/en/whitepaper/

[17] N. Szabo. (1997) The idea of smart contracts. [Online]. Avail-

able: https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/

Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html

[18] H. Hu and Y. Xu, “Scsguard: Deep scam detection for ethereum smart

contracts,” arXiv preprint arXiv:2105.10426, 2021. [Online]. Available: https:

//arxiv.org/abs/2105.10426

[19] J. Xu and B. Livshits, “The anatomy of a cryptocurrency Pump-and-Dump

scheme,” in 28th USENIX Security Symposium (USENIX Security 19). Santa

Clara, CA: USENIX Association, aug 2019, pp. 1609–1625. [Online]. Available:

https://www.usenix.org/conference/usenixsecurity19/presentation/xu-jiahua

[20] CNBC. (2019) Wells fargo says working to fully restore system as outage spills into

day 2. Accessed: 2023-09-07. [Online]. Available: https://www.cnbc.com/2019/02/

08/wells-fargo-says-working-to-fully-restore-system-as-outage-spills-into-day-2.html

[21] G. Wood and N. Savers. (2021) Ethereum yellow paper. Accessed: 2023-09-07.

[Online]. Available: https://github.com/ethereum/yellowpaper

58

http://www.hashcash.org/papers/announce.txt
https://bitcoinwhitepaper.co/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://www.microsoft.com/en-us/research/publication/the-sybil-attack/?from=http%3A%2F%2Fresearch.microsoft.com%2Fapps%2Fpubs%2Fdefault.aspx%3Fid%3D74220
https://www.microsoft.com/en-us/research/publication/the-sybil-attack/?from=http%3A%2F%2Fresearch.microsoft.com%2Fapps%2Fpubs%2Fdefault.aspx%3Fid%3D74220
https://www.microsoft.com/en-us/research/publication/the-sybil-attack/?from=http%3A%2F%2Fresearch.microsoft.com%2Fapps%2Fpubs%2Fdefault.aspx%3Fid%3D74220
https://www.sciencedirect.com/science/article/pii/0167923688900966
https://www.sciencedirect.com/science/article/pii/0167923688900966
https://ethereum.org/en/whitepaper/
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html
https://arxiv.org/abs/2105.10426
https://arxiv.org/abs/2105.10426
https://www.usenix.org/conference/usenixsecurity19/presentation/xu-jiahua
https://www.cnbc.com/2019/02/08/wells-fargo-says-working-to-fully-restore-system-as-outage-spills-into-day-2.html
https://www.cnbc.com/2019/02/08/wells-fargo-says-working-to-fully-restore-system-as-outage-spills-into-day-2.html
https://github.com/ethereum/yellowpaper

[22] S. N. Khan, F. Loukil, C. Ghedira-Guegan, E. Benkhelifa, and A. Bani-Hani,

“Blockchain smart contracts: Applications, challenges, and future trends,” Peer-to-

Peer Networking and Applications, vol. 14, pp. 2901–2925, 2021.

[23] R. Morrison, N. C. H. L. Mazey, and S. C. Wingreen, “The dao controversy: The

case for a new species of corporate governance?” Front. Blockchain, vol. 3, 2020.

[24] T. M. Research. (2021) Arbitrum: Layer-2 scalability for defi protocols.

Accessed: 2023-09-11. [Online]. Available: https://research.tokenmetrics.com/

arbitrum-layer-2-scalability-for-defi-protocols-crypto-deep-dive/

[25] U. Team. (2021) Uniswap v3 whitepaper. Accessed: 2023-09-07. [Online]. Available:

https://uniswap.org/whitepaper-v3.pdf

[26] Z. Zheng, S. Xie, H.-N. Dai, W. Chen, X. Chen, J. Weng, and M. Imran,

“An overview on smart contracts: Challenges, advances and platforms,” Future

Generation Computer Systems, 2019. [Online]. Available: https://doi.org/10.48550/

arXiv.1912.10370

[27] F. Vogelsteller and V. Buterin. (2015) Eip-20: Erc-20 token standard. Accessed:

2023-09-07. [Online]. Available: https://eips.ethereum.org/EIPS/eip-20

[28] W. Entriken, D. Shirley, J. Evans, and N. Sachs. (2018) Eip-721: Erc-

721 non-fungible token standard. Accessed: 2023-09-09. [Online]. Available:

https://eips.ethereum.org/EIPS/eip-721

[29] W. Radomski, A. Cooke, P. Castonguay, J. Therien, E. Binet, and R. Sandford.

(2019) Eip-1155: Erc-1155 multi token standard. Accessed: 2023-09-09. [Online].

Available: https://eips.ethereum.org/EIPS/eip-1155

[30] A. Beniiche, “A study of blockchain oracles,” arXiv preprint arXiv:2004.07140, 2020.

[Online]. Available: https://doi.org/10.48550/arXiv.2004.07140

[31] I. Hacking, The Social Construction of What? Harvard University Press, 1999.

[Online]. Available: http://www.jstor.org/stable/j.ctv1bzfp1z

[32] D. Avital, “The standard metre in paris,” Philosophical Investigations, vol. 31, no. 4,

pp. 318–339, 2008.

[33] L. Lessig, The Laws of Cyberspace, 1998, draft 3, Harvard Law School. [Online].

Available: https://cyber.harvard.edu/works/lessig/laws cyberspace.pdf

[34] ——, Code and Other Laws of Cyberspace. Basic Books, 1999.

[35] C. D. Clack, V. A. Bakshi, and L. Braine, “Smart contract templates: foundations,

design landscape and research directions,” 2017.

59

https://research.tokenmetrics.com/arbitrum-layer-2-scalability-for-defi-protocols-crypto-deep-dive/
https://research.tokenmetrics.com/arbitrum-layer-2-scalability-for-defi-protocols-crypto-deep-dive/
https://uniswap.org/whitepaper-v3.pdf
https://doi.org/10.48550/arXiv.1912.10370
https://doi.org/10.48550/arXiv.1912.10370
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-1155
https://doi.org/10.48550/arXiv.2004.07140
http://www.jstor.org/stable/j.ctv1bzfp1z
https://cyber.harvard.edu/works/lessig/laws_cyberspace.pdf

[36] Ethereum Foundation. (2023) The merge. Accessed: 2023-09-11. [Online]. Available:

https://ethereum.org/en/roadmap/merge/

[37] International Swaps and Derivatives Association and Linklaters, “Smart contracts

and distributed ledger – a legal perspective,” 2017. [Online]. Available: https://www.

isda.org/a/6EKDE/smart-contracts-and-distributed-ledger-a-legal-perspective.pdf

[38] Deloitte and W. E. Forum, “Over the horizon: Blockchain and the future of

financial infrastructure,” 2023, contact: Leif Boegelein, lboegelein@deloitte.ch,

+41 58 279 7340. [Online]. Available: https://www2.deloitte.com/ch/en/pages/risk/

articles/over-the-horizon-blockchain-and-the-future-of-financial-infrastructure.html

[39] W. Bank, “Remittance prices worldwide: Issue n. 19, september 2016,” September

2016, accessed: 2023-09-11. [Online]. Available: http://remittanceprices.worldbank.

org

[40] International Federation of Accoutants, “2015 audit fee report,” FEI Publication,

Tech. Rep., 2015, survey results from 76 publicly-held companies, 92 U.S.

privately-held companies, and 57 nonprofit organizations. FEI Publication

Code: 2015-018. [Online]. Available: https://www.ifac.org/knowledge-gateway/

contributing-global-economy/publications/audit-fees-survey-2022

[41] C. D. Clack and C. McGonagle, “Smart derivatives contracts: the isda master agree-

ment and the automation of payments and deliveries,” 2019.

[42] C. McGonagle, “Translations: creating legally effective smart derivatives

contracts,” Butterworths Journal of International Banking and Financial Law,

vol. 36, no. 8, p. Page Range, 2023, accessed: 2023-09-07. [Online]. Available:

https://www.lexisnexis.co.uk/blog/docs/default-source/loan-ranger-documents/

jibfl 2021 vol36 issue08 sep pp540-543.pdf?sfvrsn=652ef6df 2

[43] International Swaps and Derivatives Association, “Isda clause library –

credit support documentation,” https://www.isda.org/book/isda-clause-library-

credit-support-documentation/, 2023.

[44] ——. (2021) Isda create overview 2021. Accessed: 2023-09-09. [Online]. Available:

https://www.isda.org/a/8nVgE/ISDA-Create-Overview-2021.pdf

[45] ——, “What is the isda cdm?” 2019, accessed: 2023-09-08. [Online]. Available:

https://assets.isda.org/media/c2565206/0b805a0d-pdf/

[46] International Capital Market Association. (2021, August) Cdm for repo

and bonds: Factsheet for implementation. Accessed: 2023-09-08. [Online].

Available: https://www.icmagroup.org/assets/documents/Regulatory/FinTech/

CDM-for-repo-and-bonds-factsheet-23-August-2021-2.pdf

60

https://ethereum.org/en/roadmap/merge/
https://www.isda.org/a/6EKDE/smart-contracts-and-distributed-ledger-a-legal-perspective.pdf
https://www.isda.org/a/6EKDE/smart-contracts-and-distributed-ledger-a-legal-perspective.pdf
https://www2.deloitte.com/ch/en/pages/risk/articles/over-the-horizon-blockchain-and-the-future-of-financial-infrastructure.html
https://www2.deloitte.com/ch/en/pages/risk/articles/over-the-horizon-blockchain-and-the-future-of-financial-infrastructure.html
http://remittanceprices.worldbank.org
http://remittanceprices.worldbank.org
https://www.ifac.org/knowledge-gateway/contributing-global-economy/publications/audit-fees-survey-2022
https://www.ifac.org/knowledge-gateway/contributing-global-economy/publications/audit-fees-survey-2022
https://www.lexisnexis.co.uk/blog/docs/default-source/loan-ranger-documents/jibfl_2021_vol36_issue08_sep_pp540-543.pdf?sfvrsn=652ef6df_2
https://www.lexisnexis.co.uk/blog/docs/default-source/loan-ranger-documents/jibfl_2021_vol36_issue08_sep_pp540-543.pdf?sfvrsn=652ef6df_2
https://www.isda.org/a/8nVgE/ISDA-Create-Overview-2021.pdf
https://assets.isda.org/media/c2565206/0b805a0d-pdf/
https://www.icmagroup.org/assets/documents/Regulatory/FinTech/CDM-for-repo-and-bonds-factsheet-23-August-2021-2.pdf
https://www.icmagroup.org/assets/documents/Regulatory/FinTech/CDM-for-repo-and-bonds-factsheet-23-August-2021-2.pdf

[47] C. D. Clack, “Design discussion on the isda common domain model,” 2018, accessed:

2023-09-07. [Online]. Available: https://arxiv.org/abs/1711.10964

[48] International Swaps and Derivatives Association. (2023) Isda digi-

tal asset derivatives definitions. Accessed: 2023-09-07. [Online]. Avail-

able: https://www.isda.org/book/isda-digital-asset-derivatives-definitions/#:∼:

text=The%20ISDA%20Digital%20Asset%20Derivatives,)%20or%20Ether%20(ETH)

[49] I. Allison, “Divisions in sam bankman-fried’s crypto empire blur

on his trading titan alameda’s balance sheet,” CoinDesk, 11

2022. [Online]. Available: https://www.coindesk.com/business/2022/11/02/

divisions-in-sam-bankman-frieds-crypto-empire-blur-on-his-trading-titan-alamedas-balance-sheet/

[50] E. Napolitano, “The fall of celsius network: A timeline

of the crypto lender’s descent into insolvency,” CoinDesk, July

2022. [Online]. Available: https://www.coindesk.com/markets/2022/07/15/

the-fall-of-celsius-network-a-timeline-of-the-crypto-lenders-descent-into-insolvency/

[51] D. W. Allen and J. Potts, “Web3 toolkits: A user innovation theory of

crypto development,” Journal of Open Innovation: Technology, Market, and

Complexity, vol. 9, no. 2, p. 100050, 2023. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S219985312300152X

[52] The Board of the International Organization of Securities Commissions, “Policy

recommendations for decentralized finance (defi) consultation report,” International

Organization of Securities Commissions, Consultation Report, September 2023.

[Online]. Available: https://www.iosco.org

61

https://arxiv.org/abs/1711.10964
https://www.isda.org/book/isda-digital-asset-derivatives-definitions/#:~:text=The%20ISDA%20Digital%20Asset%20Derivatives,)%20or%20Ether%20(ETH)
https://www.isda.org/book/isda-digital-asset-derivatives-definitions/#:~:text=The%20ISDA%20Digital%20Asset%20Derivatives,)%20or%20Ether%20(ETH)
https://www.coindesk.com/business/2022/11/02/divisions-in-sam-bankman-frieds-crypto-empire-blur-on-his-trading-titan-alamedas-balance-sheet/
https://www.coindesk.com/business/2022/11/02/divisions-in-sam-bankman-frieds-crypto-empire-blur-on-his-trading-titan-alamedas-balance-sheet/
https://www.coindesk.com/markets/2022/07/15/the-fall-of-celsius-network-a-timeline-of-the-crypto-lenders-descent-into-insolvency/
https://www.coindesk.com/markets/2022/07/15/the-fall-of-celsius-network-a-timeline-of-the-crypto-lenders-descent-into-insolvency/
https://www.sciencedirect.com/science/article/pii/S219985312300152X
https://www.sciencedirect.com/science/article/pii/S219985312300152X
https://www.iosco.org

	Introduction
	Background
	Blockchains
	Smart Contracts
	Ethereum Request for Comment Standards
	Development and Approval Process
	Notable ERC Standards
	Ongoing Innovations

	Oracles
	The Philosophy of Decentralised Consensus
	Legal Status of Smart Contracts
	The Internal and External Model Of Smart Legal Contracts
	External Model
	Internal Model

	Smart Derivative Contracts
	International Swaps and Derivatives Association
	The ISDA Master Agreement
	ISDA Common Domain Model

	ISDA Digital Asset Definitions
	Smart Contract Templates

	Methodology
	The Smart Confirmation Contract
	Translating the Common Domain Model into Solidity
	Modularisation of the CDM
	Conditioning of the Confirmation Smart Contract with the Common Domain Model
	The Logic Module: A Singleton Standardised Agnostic Logic Smart Contract
	Four Section Standardisation of Logic Module Smart Contracts
	Representing A Derivative Lifecycle As Stacks of Logic Modules
	Building and Bridging CDM Functions to Digital Asset Definition Logic Modules

	First and Second Order Periphery
	An Ecosystem of Smart Confirmation Contract Derivatives

	Results, Caveats, and Discussion
	Problematic CDM translation
	Enumeration Too Large
	Recursive Type Structure
	Addition of Non–Rosetta Types
	Storage Inefficiency in CDM and its Impact on Smart Derivatives Contracts

	Stabilizing Cash Settlement Amounts in EVM Smart Contracts
	Architecture of a Comprehensive Decentralised Web Application for Smart Confirmation Contracts
	User Interface: Contract Template Selection and Customization
	User Interface: ISDA–Compliant Input Form
	Smart Contract Compilation and Transaction Initiation
	Contract Monitoring
	Contract Interaction
	Event History and User Interactivity
	AI–Powered Query Handling

	Areas for Enhancement
	Optimization of Time–series Retrieval
	Event–based Data Retrieval Constraints
	Considerations for Natural Language Contract Storage
	General Improvements and Trustworthiness

	Conclusion
	Summary of Key Findings
	Theoretical and Practical Implications
	Theoretical Implications
	Practical Implications

	Limitations and Caveats
	Regulatory and Policy Implications
	Final Remarks

	Appendix code
	Code listing
	Project Summary

	Bibliography

