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Abstract

Amid the developments towards smart contracts and legal digitisation, much attention has
been given to automating contractual performance through the use of tools such as smart
contracts. However, the foundational necessity to first develop a comprehensive digital model
of a legal agreement has been largely overlooked. Analogous to Computer Aided Design (CAD)
in engineering, where components are defined by a series of interconnected coordinates forming
a foundational model for subsequent analysis, this paper aims to create a model capable of
capturing the foundational geometry of a contract. By expressing a contract in a Controlled
Natural Language (CNL) such a geometry can be represented in the form of a Petri Net,
facilitating performance simulation and providing a clear feedback on contractual expectations.

A literature review on the state of computable contracting and the advancements towards
digital representation of contractual agreements was compiled. On the basis of the literature,
a logical model and formal syntax for representing a contract as a Petri Net was developed.
Syntax translators that facilitate the conversion of two CNLs into the proposed formal syntax
were constructed. This translation process enables the novel ability to automatically generate
a Petri Net capable of representing a contract and simulating its performance under various
scenarios.

By expressing contracts as Petri Nets, the model was able to enhance the clarity and trace-
ability of contractual obligations and conditions. Furthermore, the representation could offer
a significant advantage in the identification of “legal bugs”, consisting of subtle miss steps in
phrasing or wording that can significantly alter the underlying logic of a contract. Although
such bugs might escape notice in a textual format, their visual representation through Petri
Nets makes anomalies more discernible.
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The life of the law has not been logic; it has
been experience.

— Oliver Wendell Holmes Jr.
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1 | Introduction

1.1 Smart and Computable Contracting

In recent decades, nearly all industries have undergone radical transformations due to
the digital representation of their core products. However, the core product of the legal
profession, a contractual agreement between two or more parties exchanging goods or
services, has remained unchanged for the most part, remaining a document expressed in
natural language [6].

The potential benefits of a new paradigm concerning the expression and formatting of
computable contracts are vast, including applications such as automated performance
or inconsistency analysis of contracts. However, such a paradigm shift comes with a
multitude of unique challenges, such as the lack of a common consensus regrading the
definition and scope of Smart Contracts [7]. This confusion can be partially attributed
to the rise of blockchain-related technologies, like Ethereum, that define the operational
aspects of digital agreements. Here, software agents take ownership or control of assets
within a shared ledger [7].

Another significant challenge is the current lack of a mature language capable of fully
expressing a legal agreement in a way that is human and computer readable. Several
languages, in the form of Controlled Natrual Languages (CNL) and Domain Specific
Languages (DSL), are being developed to bridge this research gap. Comparisons of
several such languages by Idelberger [8] and analysis of the challenges any such language
faces by Clack [9] have found the existing languages to offer promising glimpses into the
future of computable contracting, but that they are yet in their developing stages and
too immature for large scale adoption as of now.

However, languages such as Lexon [10] and CoLa [2] can already be used to highlight the
potential benefits that a computable contracting future can hold. This project will use
these languages, as input sources in Section 4, to produce a logical contract model that
facilitates deeper analysis.

xii
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1.2 The Logical Contract Model

A contract can be viewed as an event processing machine, detailing the expectations of
parties under various possible event sequences. Thus, a contract should be expressible
as a logical model, detailing its structure and allowing reasoning about the clauses and
expectations.

Flood and Goodenough [11], proposed that a well-written financial agreement should
follow a state transition logic, allowing its mathematical formalisation. Research high-
lighted the relative simplicity of the computational logic involved in such an agreement by
manually converting and representing a simple loan agreement as a Deterministic Finite
Automaton (DFA).

A different logical model for electronic contracting, representing contracts as Petri Nets,
was proposed by Lee [1]. While only simple agreements were expressed in this logical
model, the methodology was successful in providing a graphical representation of the
contracts as a Petri Net, from which further reasoning could be done. However, this
Petri Net did not represent the contract in an accessible manner that could provide
insight on its preformative state.

These past attempts have highlighted the benefits of a theoretical and logical contractual
model but have shown limitations in their application. Based on Lee’s electronic contract
model, this paper will investigate the development of a new logical mode in Seciton 4,
with the aim of improving the flexibility and expressability of the contract as a Petri Net.

1.3 Project Aims

The primary aim of this project is to develop a logical model of a legal agreement ex-
pressed in a Controlled Natural Language (CNL), using Petri Nets.

1. Merge the domain of Controlled Natural Language and Logical contract modelling.

2. Develop a methodology to faithfully represent a contract as a Petri Net.

3. Develop a methodology to convert contracts written in a CNL into a Petri Net.
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4. Investigate the ability to simulate contract performance using the Petri Net repre-
sentation of a contract.

1.4 Objectives

The objectives of the project are the specific and measurable tasks that must be completed
to achieve the broader aims outlined above. This section details each of these objectives,
providing a clear roadmap for the project’s development.

1. Conduct a literature review on the state of computable contracting and languages
used for it.

2. Develop a formal intermediate syntax that can express contracts written in CoLa
and Lexon, serving as a bridge between CNLs and Petri Nets.

3. Develop a methodology to generate the intermediate syntax representation of a
contract from the Lexon and CoLa Abstract Syntax Trees (ASTs).

4. Develop a methodology to convert the intermediate syntax representation of a con-
tract into a Petri Net, enabling a graphical and logical representation of the con-
tract.

5. Convert multiple contracts written in CoLa and Lexon into Petri Nets using the
developed methodology to validate its effectiveness and flexibility.

6. Develop a methodology to simulate contractual performance based on the Petri Net
representation of the contract.

7. Evaluate the simulated contract performance and the overall effectiveness of the
developed methodology in enabling reasoning and analysis on contracts.

xiv



2 | Background

2.1 Controlled Natural Languages for Contracting

Controlled natural languages allow for the flexibility inherent in standard English while
being sufficiently structured and restricted to be convertible into computer code [9]. This
allows the contract to simultaneously act as its own source code, eliminating the need to
draft a contract in English by a lawyer and then translate it into code by a programmer,
where a significant risk of unsuccessful conversion can occur.

2.1.1 Lexon

Lexon is a highly readable CNL developed by H. Diedrich [10]. It facilitates the creation of
contracts that are both computer-executable and human-readable. A layperson without
programming experience, such as a lawyer, can easily understand a contract written in
Lexon, while it can also be directly compiled into the respective Solidity and Sophia code,
ready for deployment on the Blockchain.

An example of a Lexon contract and the corresponding Solidity Code can be seen in
Listing 1 and Listing 2.

1 LEX Paid Escrow.
2 LEXON: 0.2.12
3 'Payer' is a person.
4 'Payee'is a person.
5 'Arbiter' is a person.
6 'Fee' is an amount.
7 The Payer pays an Amount into escrow,
8 appoints the Payee,
9 appoints the Arbiter,

10 and also fixes the Fee.
11 CLAUSE: Pay Out.
12 The Arbiter may pay from escrow the Fee to themselves,
13 and afterwards pay the remainder of the escrow to the Payee.
14 CLAUSE: Pay Back.
15 The Arbiter may pay from escrow the Fee to themselves,
16 and afterwards return the remainder of the escrow to the Payer.

Listing 1: Lexon contract detailing an Escrow controlled by a third party [3].

1
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1 pragma solidity ^0.5.0;
2 contract PaidEscrow{
3 constructor(address payable _payee, address payable _arbiter, uint _fee)
4 public payable {
5 payer=msg.sender;
6 amount=msg.value;
7 escrow.transfer(amount);
8 payee=_payee;
9 arbiter=_arbiter;

10 fee=_fee;
11 }
12 function Pay_Out() external {
13 if (msg.sender == arbiter){
14 arbiter.transfer(fee);
15 payee.transfer(address(this).balance);
16 }
17 else{
18 require(false);
19 }
20 }
21 function Pay_Back() external {
22 if (msg.sender == arbiter){
23 arbiter.transfer(fee);
24 payer.transfer(address(this).balance);
25 }
26 else{
27 require(false);
28 }
29 }
30 }

Listing 2: Solidity code of Escrow contract in Listing 1.
Lexon’s fundamental grammar closely mirrors that of natural English, adhering to the
order of: Subject, Verb, Object [12]. In this structure, verbs and the object are grouped
together into a predicate. The use of nouns is highly flexible, permitting terms such as
“Payer”, “Person”, “A”, “John Smith” etc. Unlike nouns however verbs such as “pay” or
“request” are restricted in their use.

Lexon’s design is focused on the creation of machine-executable contracts. This
design focus makes expressing concepts outside the blockchain realm challenging and
cumbersome, making Lexon unsuitable at expressing most legal agreements.
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Consider a tenancy agreement requiring a tenant to maintain the property or a
Landlord to provide the tenant with furniture for the property. Services like property
maintenance cannot be independently verified on the Blockchain, and likewise the
actual asset, the property, is not inherent to the Blockchain. Although expressing these
types of obligations is not impossible in Lexon, it is an intricate process that requires
clauses in which parties can certify obligations are fulfilled and define consequences if not.

Additionally, the nature of Lexon restricts it’s expressive potential in comparison to
normal legal contracts. In conventional legal agreements, the contract sets a structure
and a set of boundaries over what is expected of each party without providing a
step-by-step guide on how each party should meet its expectations. This approach
allows the contract to describe a vast array of possible performances, potentially allowing
room for flexibility based on the intentions and interpretations of circumstances. This is
needed, as it is either impossible or unfeasible to describe the contractual expectations
under all possible scenarios that could occur.

In contrast, Lexon is designed to describe a singular specific performance of a contract in
a clear step-by-step manner. As such, Lexon describes the performance of an agreement
more than a contract in itself. This has a significant impact on the design of Lexon and
what a contract written in it can describe. Due to this, the concept of prohibitions, what
one is forbidden from doing, is redundant in Lexon. There is simply no need to describe
what is prohibited, as the step-by-step description of the performance inherently ensures
that anything that is not specifically permitted simply cannot occur. In the legal realm,
however, the ability to express these prohibitions is invaluable, as they serve as clear
boundaries and provide guidance to the parties.

2.1.2 CoLa

CoLa, the Controlled Natural Language for Computable Contracting was developed by
S. Fattal for a Master’s Thesis [2]. Unlike Lexon, CoLa is focused on the digital repre-
sentation of a legal contract and does not cover the aspect of automated performance or
code generation.
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CoLa allows for the expression of the deontic elements of a contract, capturing obligations,
permissions and prohibitions. Cola’s syntax additionally allows for the ability of “priority
clauses”, that is the expression of a statement that supersedes another under certain
conditions. Furthermore, CoLa’s ability to produce a parse tree of the contract allows
for relatively easy identification of all relevant components relating to a statement.

1 IF [1] it is the case that PartyA shall pay AMOUNT 'A' on ADATE
2 AND
3 [2] it is the case that PartyB shall pay AMOUNT 'B' on THEDATE
4 THEN[3] it is not the case that PartyA shall pay AMOUNT 'A' on THEDATE
5 AND
6 [4] it is not the case that PartyB shall pay AMOUNT 'B' on THEDATE
7 C-AND
8 [5] it is the case that ExcessParty shall pay AMOUNT "ExcessAmount" on THEDATE
9 C-AND

10 IF [6] it is the case that PartyA paid more than PartyB
11 THEN[7] ExcessParty IS PartyA
12 AND
13 [8] ExcessAmount EQUALS AMOUNT 'A' MINUS AMOUNT 'B'
14 C-AND
15 IF [9] it is the case that PartyB paid more than PartyA
16 THEN[10]ExcessParty IS PartyB
17 AND
18 [11]ExcessAmount EQUALS AMOUNT 'B' MINUS AMOUNT 'A'.

Listing 3: CoLa contract detailing the ISDA Master Agreement [2].

Although CoLa offers a human-readable format, it is less intuitive than Lexon for the
lay person that is not familiar with the language. At times, it can also be difficult to
discern between statements and conditions, an example of which are the components [1]
and [4] in Listing 3. Nonetheless, CoLa’s ability to logically express deontic statements
of a legal agreement under clearly laid out conditions is powerful.

Owing to the nature of being a Masters research Project, it is not yet fully mature,
and its syntax too limited to allow for the expression of many essential concepts. For
instance, unlike Lexon, CoLa currently does not allow the specification of a secondary
subject in a statement such as “PartyA shall pay Amount A to Party B”. Although one
might argue that this is implied within the contract’s context, it limits CoLa’s ability to
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express contracts that concern multiple stakeholders.

Moving forward, the available version of CoLa was a slight iteration before the finished
version in Fattal’s thesis. Although their functionalities are nearly indistinguishable,
this preliminary CoLa version does not allow the expression of ambiguous dates like
“ADATE”. Therefore, it required the explicit specification of a date for any statement.
This limitation was deemed acceptable since it neither altered the contract’s structure or
spirit, nor the inherent logic of CoLa.

2.2 Petri Net

The Petri Net, a type of state machine capable of describing the flow of information of
complex and recursive systems, was developed by Carl Adam Petri in 1966 [13].
The basic Petri Net, is a weighted directed graph, of two types of nodes, place nodes and
transition nodes, connected through weighted arcs. place nodes, as shown in Figure 2.1,
describe the state or substate of a system and may hold an unlimited number of tokens.
These tokens, represented as black dots, signify the value of the state or substates. The
Petri Net combines the features of a PERT diagram, useful for capturing the relative
timing of parallel or sequentially occurring activities, and decision trees that can display
the set of available choices of actions given a sequence of events [1].

Figure 2.1: Components of Petri Net (1) place node with no token; (2) place node with
one token; (3) transition node

Transition nodes do not hold tokens, but rather symbolise actions or events that cause
a transition between states. A transition becomes enabled when each of its input place
nodes has tokens equal to or greater than the weight of the connecting arc. Once a
transition is enabled, it can fire at any time, referring to the process of transferring
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tokens from the input place nodes of the transition node to the output place nodes,
according to the weight of the connecting arcs [14], as illustrated in Figure 2.2.

Figure 2.2: Illustration of Petri Net: (1) transition node not enabled; (2) transition node
enabled, before firing; (3) transition node, no longer enabled after firing

Since its inception, there have been several extensions to Petri Nets. Two notable exten-
sions include the introduction of read arcs and inhibitor arcs. These allow a transition to
test for the presence or absence of tokens at place nodes, without influencing the place
node upon firing [15], as illustrated in Figure 2.3.

Figure 2.3: (A.1) Non enabled transition node with inhibitor arc; (A.2) Enabled transition
node with inhibitor arc before firing; (A.3) transition node with inhibitor arc after firing.
(B.1) Non enabled transition node with read arc; (B.2) Enabled transition node with
read arc before firing; (B.3) transition node with read arc after firing.
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2.3 Literature Review

Clack et al.[7] provided insight into the paradigm of smart contract templates, exploring
the semantics, parameters, and common terminology of smart contracts. The paper
proposed a semantic framework encompassing operational and nonoperational aspects of
legally enforceable smart contracts, as well as a high-level definition of the term “smart
contract”. The work serves as a research compass, highlighting various research directions,
such as the potential development of a formal language aimed at writing smart contracts.

A new framework merging a web-based interface with a Python API, facilitating the
development of machine-readable contracts through human and machine-readable
legal language repositories [16]. The Z3 prover developed by Microsoft Research
was integrated into the framework, enabling the formal verification and validation of
agreements. The research analysed a number of sample agreements, identifying 21
unique legal actions, 17 of which could be incorporated into the framework. The paper
noted that the framework thus far lacks the ability to “cleanly” represent recurring
events. While appearing promising, neither the implementation details of the framework
nor the identified actions were fully detailed, suggesting the need for further investigation.

R. Kowalski [17] investigated the ability and practicality of representing legislation as
logic programmes. Through the analysis of various pieces of legal language such as the
British Nationality Act or the University of Michigan lease termination clause, Kowalski
managed to successfully articulate these agreements as logical statements.

Flood and Goodenough [11] found that a Deterministic Finite Automata (DFA) was
able to accurately represent the intent and logic behind a well written financial contract.
They successfully represented the logic of a simple Loan Agreement as a DFA, noting
that while the DFA representation may be a useful starting point, it is likely not a
practical approach. The paper concluded that due to the inherent limitations of a DFA,
the representation of more complex legal agreements requires an expansion of the pure
DFA or use a Nondeterministic Finite Automata.

R. Lee [1] proposed a logical programming formulation based on the combination of Von
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Wright’s ‘logic of change‘ and other logical expression frameworks such as deontic logic
and a modified version of the temporal logic system developed by Rescher and Urquhart.
Based on this logical programming formulation, Lee modelled a contract as a Petri Net
where events and actions are specified as attributes of transition nodes. Lee describes
the substate of a contract system to be a conjunction of elementary literals which depict
either a proposition or its negation. Various simple contracts were expressed through the
formulation developed, demonstrating that they can be represented as Petri Nets. Lee
subsequently developed a Natural Language interface using Prolog which was able to
provide answers to performative state of the contract given various hypothetical “what
if” scenarios.

Castaneda [18] provided a critique of Von Wright’s logic of change (which Lee utilised),
stating that the T calculus suffers from significant ambiguity in it’s interpretation of the
T operator. Castaneda suggested the introduction of a new T* operator to address this
ambiguity. Additionally he critiques von Wright’s axioms of the OP-Calculus, used to
describe Obligations and Permissions, claiming the assertion of “You ought to do A and
B” does not entail “You ought to do A”, is incorrect, as statements such as “Open the
window and shut the door” would entail that one should open the window even if the
door was already shut.

An extensive background on the state of computable programming and the underlying
requirements facing the field was provided by the LSP Working Group [19]. The
goal of the LSP working group is to define a Legal Specification Protocol (LSP) to
provide a set of standards and conventions for capturing the legal event space and
legal formulations in a way that follows the logical structure of legal documents and is
machine-executable. The White Paper compiles a relatively detailed taxonomy of the
information requirements needed to accurately represent a legal computational model.
The LSP group anticipates that an interface to a legal protocol would employ a symbolic
or graphical user interface and would not be “a big-data emulation based on the flawed
system of natural language contractual representation”.

J. Hazard and H. Haapio [20] extended the idea of wise contracts that work for humans
and machines based on the “Ricardian Contract” paradigm [21], and the requirements
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of smart contract templates set out by Clack et al.[7]. The paper highlights how prose
objects could serve as a connection between human and automated systems in a way
that enables programmers to automate computable interactions without automating
the entire contract, providing incentive for a gradual codification of the law. The paper
offers insight into how a “barebones” core Contract Object could be used and extended
with a variety of jurisdictions and languages.

C. Clack conducted a detailed investigation of the languages used for smart and com-
putable contracts [9]. This work covers the various challenges faced when attempting
to automate the operational performance of a legal agreement through smart contracts.
Through an exploration of the differences in semantic interpretations and logical
analysis of the highly specialised fields of computer science and law, the difficulties
of translating a legal agreement onto code are highlighted. The paper addresses the
need of drafting contracts through a language that results in a single artefact, where
the contract is the code. Various approaches to enable such a single artefact contract,
like markup languages, controlled natural languages, and domain specific languages,
are investigated and compared, concluding that while some languages allow for the
expression of complicated legal prose, they are mostly untested on larger contracts or
inaccessible lack a style that makes the drafting accessible to lawyers.

Languages developed for smart and computable contract creation vary considerably
in scope and application. Generally speaking, in their implementation, the various
languages fit within the three categories describe Clack [9]: (i) Markup languages and
templates; (ii) Domain-Specific Languages (DSL); (iii) Controlled Natural Languages
(CNL).

Markup Languages and Templating systems, such as the Cicero templating system of
the Accord Project [22] or LegalML [23], combine natural language with parameters,
offering a framework for reusable contract templates.

Domain Specific Languages attempt to improve the process of legal contract drafting as
the contract is code, thus the drafting of a contract is more akin to programming than
writing a natural language text. The Catala language [24] developed by Merigoux et al.
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is one example of such a DSL, where each line of a legislative text is annotated with a
snippet of code that represents the codified meaning of the text. While this enhances
the comprehension of legal code for non-legal experts, the manual codification of legal
prose remains a significant challenge.
Another notable DSL, the L4 language [25], allows contracts to be constructed in a
highly structured spreadsheet environment. While the L4 language enables a range
of powerful outputs such as interactive exploration of decision logic and contract
visualisation as a Petri Net, the spreadsheet-style drafting process makes the language
inaccessible to non-experts and may deter widespread adoption.

Controlled Natural Languages are a subset of a natural language such as English, with
a restricted grammar and vocabulary allowing for an unambiguous text that be eas-
ily parsed by a computer. The Lexon language, developed by H. Diedrich [10] is a
combined CNL and DSL, with the aim of providing a computer executable and human-
understandable contract drafting language. The Lexon language provides an extremely
powerful combination of old-style contractual drafting with a syntax and grammar that
can easily be understood by lawyers and non-programming professionals while also au-
tomatically generating smart contract code in Solidity or Sophia to be executable on
the Blockchain. Unlike natural English whose core vocabulary is estimated to consist of
roughly 850 words, Lexons core vocabulary consists of only 130 words, as it only allows
the expression of a limited number of verbs [12].
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3 | Requirements and Analysis

3.1 The Need for a Logical Contract Model

Upon review of the current advancements towards Smart Contracts and the digitisation
of law, it has become apparent that a significant effort has been put towards the auto-
mated performance of contracts. Interestingly, this has largely eclipsed the foundational
task of creating a comprehensive and logical model of a legal agreement first. At its
core, the digital contract model could be likened to the geometry of a contract, laying
out permissions, obligations, and prohibitions detailed in the agreement according to
various possible scenarios.

A suitable analogy to such a model can be drawn from the realm of Computer Aided
Design (CAD). Using CAD, engineering components can be defined by a series of
interconnected coordinates, i.e. the geometry of a 3 dimensional part. Once this
geometry is established, further analysis can be built on top of this foundational model.
This includes analysis such as stress testing, thermodynamic simulations, or even
producing the instructions needed for a 3D printer to manufacture the part straight from
the software. Tasks that were previously time and resource intensive, such as producing
a physical engineering drawing, evaluating with technicians to see whether it can be
manufactured or redrawing the part for a design iteration, have become significantly
faster and cheaper [26].

Similarly to how the CAD model serves as a foundation for more integrated tasks,
the digital contract, when constructed as a logical model, will lay the groundwork for
further layers of application for the legal profession. Such a model would be capable of
representing the expected interactions between the contractual parties given a range of
scenarios. Once established, it could enable additional applications and analysis such
as automated inconsistency checks, compliance assessments against current legislation,
comparison of contracts drafted with slight changes in clauses, contract visualisation,
and automated contractual performance.
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The attempt to create such a model, such as the representation of a loan agreement
as a DFA by Flood and Goodenough [11], demonstrated the possibility of representing
a complex real contract as a state machine. However, this attempt required manual
conversion of the contract into the DFA and only served as a proof of concept. The
DFA was chosen for its simplicity but would likely be an impractical medium for the
representation of complex contracts [11].

The LSP working group suggests that the creation of a digital contract would likely be
done through a graphical user interface, to avoid the flawed and ambiguous nature of
natural language [19]. However, the user experience of any such model for the drafting
lawyer is a critical issue and will likely require a solution that is familiar and accessible
to the drafting lawyer, such as a formal language as suggested by C. Clack [7]. An
example of such a model, based on the use of a formal language, is the logical contract
model developed by R. Lee [1], who used a natural language interface to convert simple
written agreements into a Petri Nets. The ability of automatically representing contracts
as Petri Nets appeared promising, but insufficient, as the generated Petri Net, was not
easily interpretable regarding the details on the performative state of the contract as a
whole, and only simple contracts were generated.

Thus, there exists a gap in the ability to automatically create a logical representation of a
contractual agreement expressed through natural language. This paper proposes that the
use of CNL structures and restricts the ambiguity in legal agreements sufficiently to allow
the representation of a contracts geometry in the form of a Petri Net state machine. This
representation could be an enormous advantage to drafting lawyers, providing them with
the ability to easily visualise a contracts logic and enabling them to pinpoint elements
tied to any clause in the agreement. Furthermore, the Petri Net representation of the
contract can facilitate performance simulation of the agreement, offering detailed insights
into a contracts preformative state for a variety of scenarios.
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3.2 Requirements for a Digital Contract Model

Based on the analysis of existing literature on smart computing contracts, controlled
natural languages, and logical representations of contracts as state machines, the
following section presents a list of requirements for the logical contract model.

(R1) Use a controlled natural language as input source
Smart and Computable contracts will need to be expressed in a manner that is
understandable to both humans and computers. While this can be achieved through
various methods, including the production of two separate artefacts, one being the
contract and one the representative code, this can carry significant risks for validation
and interpretation of linguistic semantics [9]. Thus, a single artefact, likely generated by
a CNL where the contract is the code, will be adapted and used for this model.

(R2) Ensure the output is faithful to the original contract.
When converting a contract into a logical model, it is required to maintain the spirit
of the contract, so that the model represents the original artefact without deviation.
Among other things, this requires the model to successfully include the conditional links
expressed throughout the contract, such as conditional obligations or sanctions. Flood
and Goodenough elaborated on the importance of such sanctions and conditionals,
as the majority of a contract is often composed of “unhappy paths”, describing the
ramifications and implications if a party fails to meet its expectations [11].

(R3) Support the fulfilment and voiding of expectations.
A methodology is required to ensure that expectations can be voided or considered
fulfilled, such as an agreement stating that “If the tenant did not pay the rent at the
specified date, the Landlord may charge interest until the tenant has paid all outstanding
charges”. While it is important to show that the permission to charge interest can only
be considered active upon confirmation of its precondition, that is, the tenant has not
paid rent, it is just as important to model that this permission should be voided after
the tenant paid the outstanding charges. Furthermore, obligations such as “Party A
must pay $500 to Party B”, should be considered fulfilled and not active once Party A
has met its obligations and paid.
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(R4) Do not imply that which is not specified.
The translation of the contract into a logical model should not imply that which is not
specified in the original contract and avoid deontic assumptions. Consider the example
statement “It is not the case that Party A shall pay some amount to Party B”, which
could be expressed as deontically equivalent to “Party A may not pay some amount to
Party B”. The translated contract should not leap to such conclusions, as they may
diverge from the contract drafter’s intent. Likewise, the translation of the model should
not make assumptions about unspecified repercussions for violated expectations. Lee’s
model [1], assumes that a statement such as “Party A shall do B after which Party C
shall do D” implies that if Party A did not do B the contract is in a state of default.
This model may not make any such assumption, as the statement simply did not specify
what ought to occur in such a scenario.

(R5) Allow the contract to be represented as a Petri Net.
The logical model should enable the contract to be visually expressed through a Petri
Net. This should be of sufficient complexity to allow for a faithful representation of the
source contract but remain intuitive and accessible for those unfamiliar with Petri Nets,
like legal professionals.

(R6) Support the performance simulation of a contract.
A logical contractual model should encompass contractual expectations in a way that
supports simulation of contractual performance. This simulation should be visually
represented in the Petri Net, through the recognition of facts and observations by an
oracle.

(R7) Provide insight into the current state of a contract.
Using the contract performance simulation, the model, given a series of events, should
clearly and accurately express the expectations according to the source contract.
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4 | Design And Implementation

The following chapter details the design and implementation decisions made for the
project.

4.1 The Contract as a Petri Net

This section describes the nuanced design challenges of representing the contract as a
Petri Net. This design process required a multitude of assumptions and compromises, as
there proved to be a recurring trade-off between capability of the model and readability
of the final output.

4.1.1 Statements and Conditions

The core of a contract ⇤ are the deontic statements �. These refer to obligations O(�),
permissions P (�) or prohibitions F (�), that is, the actions each party should, could or
shan’t do, which will be referred to as action statements moving forward.

⇤ = {�0, ...,�n}

Often times, in contracts, an action statement depends on a condition  before it becomes
active, such as “Party A shall do B if party C did E”, which we will express in the Petri
Net as such:

P ! T
E
� ! P�

P refers to the condition place node, T
E
� to what we will refer to as the enabling

transition, and P� to the place node of the action statement itself. We can also express
unconditional statements through T

E
� ! P�.

As described in Section 2.2, a transition, fires if all its input places have a sufficient
amount of tokens. Based on this, Figure 4.1 illustrates that the enabling transition of
the unconditional obligation would always be able to fire, and so the place node “Party
A shall do B” will always evaluate true. The conditional obligation however, can only
obtain a token from its enabling transition if the conditions place node has a token.
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Figure 4.1: Simple statements represented as Petri Nets. Left: (Unconditional Obliga-
tion) enabling transition connected to obligation place node; Right: (Conditional Obli-
gation) condition place node connected to enabling transition.

4.1.2 Token management

A major challenge in representing the contract as a Petri Net comes from the issue of
token management. The methodology described by Lee [1] mostly avoids this issue,
as it is concerned with substates as a whole rather than with individual conditions
and statements. This model attempts to represent the contract in a more accessible
manner, aiming to provide detailed insight into the contract, and as such, the following
assumptions are made.

(A1) Each place node must contain a statement that can be evaluated as a boolean, e.g.
“Party A did B” or “Party A shall do B” but not a statement that could not be logically
evaluated, such as “Hello”. Given this, each place node, is either true and holds a token
or false and holds no token. Thus each place node represents a distinct substate of the
contract, e.g. a condition, definition or expectation, and whether it is true or false.

(A2) Whether a place node that refers to a condition holds a token, is evaluated by an
oracle. This is an outside source that evaluates the result and can arbitrarily create or
destroy a token at a conditional place node.

(A3) place nodes referring to conditions, only change evaluation, i.e. gain or lose
a token, due to an event being registered by the oracle. Such an event can be the
observation of a fact (e.g. x > 5) or the confirmation of an action (e.g. “Party C did E”).
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Moving forward, a coloured Petri Net is adopted for the sake of visual clarity, where
white means that a place node has no token and green means that a place node has a
token.

Referring back to Figure 4.1, the need for read-only edges in the system can be deduced,
since the enabling transition for an obligation such as “Party A shall do B” should not
consume the token present at the conditional node “Party C did E” as this condition
would continue to be true. Although the example in Figure 4.1 would not be affected by
the consumption of the token, a contract where multiple obligations depend on the same
condition would no longer be logically valid as shown in Figure 4.2. Here, the consumption
of the token at the “Party C did E” place node, at either enabling transition, would cause
the other transition, to no longer be enabled.

Figure 4.2: Petri Net of two action statements depending on the same condition. “If
Party C did E then Party A may do B. If Party C did E and Party F did G, then Party
A shan’t do D”.

Therefore, conditional place nodes will be connected to enabling transitions through the
use of read-only arcs described in Section 2.2, denoted as r!, as illustrated in Figure 4.3.

P 
r! T

E
� ! P�

Not only are statements dependent on confirmation of conditions, often they also depend
on the negation of a condition such as “If party C did not do E, Party A shall do X”.
To incorporate this into the Petri Net, each condition  must be represented with its
negation using a mutual exclusive connection, presented by Wang [27], since  and ¬ 
cannot be true at the same time.
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Figure 4.3: Illustration of the difference between normal and read-only arcs on the Petri
Net before (top) and after triggering (bottom). Left: Conditional place node connected
to enabling transition through normal arc; Right: Condition place node, connected to
enabling transition through read-only arcs.

The style of negation representation, shown in Figure 4.4, creates a set of new challenges.
For instance, a transition fires, once all its input places have a token. Therefore, once
a token is present at either “Party C did E” or “Party C did not do E”, there is always
a transition able to fire, and the token will continuously flow around, even though this
should not be the case as the statement is either true or false. Additionally, any such
representation of negation through the inclusion of a place node of the negation condition
significantly increases the number of nodes and arcs in the final Petri Net, causing the
output to be less accessible.

Figure 4.4: Petri Net of conditional obligations containing mutual exclusivity between
confirmation and negation of a conditional place node.

Therefore, moving forward, each place node describes the confirmation of a proposition,
and the negations are implemented through inhibitor arcs i! as shown in Figure 4.5.
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P 
i! T

E
� ! P�

Figure 4.5: Petri Net of conditional obligation before (left) and after (right) firing of
transition. Condition connected to enabling transition through inhibitor arc.

4.1.3 Evaluating the Unknown

With the previous addition of the inhibitor arc, a new issue is created. Suppose
the statement “If party C did not do E before 01/09/2024, Party A shall do X”,
where the condition now includes a deadline. As stated by Lee [1], while normal
logical programming has failure by negation, temporal negation is more complicated,
as if the deadline has not yet been reached, and Party c did not do E so far, it
cannot be said whether or not the condition is true (has a token) or false (has no to-
ken), as it is not yet known whether the condition will hold until the deadline has passed.

To address this issue, an alteration to (A1) was made, stating that a condition is true,
false, or unknown. This concept is already somewhat included in the mutual exclusivity
example in figure 4.4, as the node in between confirmation and negation. The choice
of a confirmation node-only approach will instead require the addition of a new colour,
Grey, to the Petri Net, to represent an unknown value.

The addition of a new colour warrants the addition of a further rule to the requirement
of a transition node to fire, as a transition node should only fire if none of its input places
contains an unknown value.
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4.1.4 Conjunction and Disjunction of Conditions

Often times, it is also the case that statements are dependent on more than one condition.
This can come in the form of a conjunction ^ (and) or a disjunction _ (or).

Figure 4.6: Left: Conjunction “If A and B and not C then Party A shall do X”; Right:
Disjunction “If A or B or not C then Party A shall do X”

Figure 4.6 highlights the need for a new place node to represent a disjunction, as place
nodes can only connect to transitions and vice versa. The conjunction does not require
an extra place node; however, it was found that including a result place node for the
conjunction of conditions resulted in a simpler final Petri Net while maintaining the
functionality and was thus adopted.

4.1.5 Fulfilment and Voidance

Although statements such as obligations, permission, or prohibitions may become active
only under certain conditions, it is similarly critical for a contractual model to allow
for the representation of the conditions under which an obligation, permission, or
prohibition no longer holds, either through fulfilment or voidance. Consider the simple
agreement used by Lee [1].

“Jones agrees to pay $500 to Smith by May 3, 1987. Following that, Smith
agrees to deliver a washing machine to Jones within 10 days.”

The conversion of this agreement into a Petri Net, and the evaluation of the sce-
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nario where Jones paid the $500 to Smith before 3 May 1987, but Smith has not yet
delivered the washing machine (before passing of the deadline) is illustrated in Figure 4.7.

Figure 4.7: Incomplete Petri Net of simple transfer agreement by Lee [1]. Conversion of
the agreement into the Petri Net, does not provide a cohesive link between the obligation
(“Jones shall pay $500 to Smith by May 3, 1987”) and the place node which confirms the
fulfilment of the obligation (“Jones paid $500 to Smith by May 3, 1987”).

Figure 4.7 highlights the lack of a cohesive link between the place node of the obligation
“Jones shall pay...” and the place node that marks the fulfilment of the obligation “Jones
paid ...”. Due to the lack of such a link, the obligation place node, holds a token even
after the obligation has been fulfilled. This is incorrect, as if Jones fulfilled the obligation,
the obligation should no longer hold, and thus lose it’s token.
Furthermore, by expressing only the statements and conditions specified in the agree-
ment, there would be no place node containing the confirmation of the second obligation
(i.e. “Smith delivered a washing machine...” ), making the evaluation of whether this
obligation has been fulfilled from the Petri Net impossible.

The issue of the missing link and the non existing place nodes for the fulfilment
condition is remedied through the following rule. Any enabling action statement,
must always include a fulfilment condition place node P�C and a voiding transition
T

V
� . Unlike the enabling transition, which acts as a source for tokens, the voiding

transition acts as a sink. Furthermore, each action statement’s place node, will always
be linked to its voiding transition through a normal arc, while the place node of the ful-
filment condition P�C will be connected to the voiding transition through a read-only arc.

The following syntax is introduced, ⇥ ! T where ⇥ represents a set of place nodes,
{P0, ..., Pn}, each connected to the transition T through a normal arc. This is further
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extended to allow for the representation of the various types of arcs in the system and is
expressed as (⇥n !,⇥r

r!,⇥i
i!)T , where ⇥n represents all the place nodes connected

to the transition through a normal arc, while ⇥r and ⇥i represent the set of place nodes
connected to the transition through read-only and inhibitor arcs respectively. Based on
this syntax, the rule given above is expressed as:

({P�} !, {P�C}
r!, {} i!)T V

�

Figure 4.8: Performance simulation of simple transfer agreement by Lee [1], with addition
of voiding transition. (1) Beginning of Agreement; (2) Jones paid $500 to Smith by May
3, 1987; (3) Smith delivered washing Machine to Jones within 10 days.

The introduction of this rule allows us to faithfully and accurately simulate the agreement
against a series of events. The newly generated Petri Net, illustrated in Figure 4.8, now
correctly highlights the active obligations after each event occurs.
The addition of the voiding transition also ensures that if an expectation has been fulfilled,
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its place node will never have a token. Even if its enabling condition remains true, causing
a token to flow from the enabling transition to the statement place node, this token is
immediately consumed by the voiding transition. This ensures that once an action is
done, its action statement can no longer be active, unless the oracle resets the status of
the fulfilment condition, e.g. for actions such as repeated payments.

4.1.6 Definitions

The discussion of contracts so far has mostly referred to action statements, the principles
concerning duties and obligations. However, the contractual model also accommodates
conditional and unconditional definitions, denoted as D. These definitions facilitate
expressions like “The Excess Party is Party A” or conditional assertions such as “If Party
B performed action C, the Fee is 500” and are expressed similarly to statements as:

P ! T
E
D ! PD

Thus, definitions are similar to statements in that they can be conditional or uncondi-
tional. Unlike statements, however, definitions only have an enabling transition and no
voiding transition, nor do definitions have a fulfilment place node.

4.1.7 Substates

Substates represent distinct phases or statuses in the contractual lifecycle, highlighting
events such as a party defaulting or a breach of contract. These phases might arise as a
result of certain conditions being met or might depend on the decision of an oracle and
are expressed as:

P ! T
E
S ! PS

This allows the definition of complex conditional relationships in the contract. For ex-
ample, referring to the prior agreement shown in Figure 4.8. A possible breach substate
for this agreement could triggered by the following condition: “If Jones did not pay $500
to Smith by May 3, 1987. Or If Jones paid $500 to Smith by May 3, 1987 and Smith
failed to deliver a washing machine to Jones within 10 days”, is illustrated in Figure 4.9.
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Figure 4.9: Example of a breach substate for the simple transfer agreement by Lee [1],
dependent on the condition: “If Jones did not pay $500 to Smith by May 3, 1987. Or If
Jones paid $500 to Smith by May 3, 1987 and Smith failed to deliver a washing machine
to Jones within 10 days”

4.2 CNL as Input Source

This section describes the conversion of the source languages Lexon and CoLa into the
logical model used for Petri Net generation.
To facilitate this conversion, translators were developed for both languages, translat-
ing the Abstract Syntax Tree (AST) generated by either the languages parser onto an
intermediate syntax, capable of expressing the elements of both languages.
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4.2.1 Intermediate Syntax

The intermediate syntax acts as a bridge for translating contracts written in Lexon
or Cola into a common format that can be used for Petri Net generation. This was
required because the fundamental differences between the two languages meant that
adopting one language’s structure for this format would lead to a loss in expressiveness
and functionality of the other.

One such difference between the two languages is Lexon’s requirement and CoLa’s
lack thereof, to express the target subject of certain actions. Thus, while Cola would
allow the expression “PersonA shall pay SomeAmount at SomeDate”, Lexon would
require the specification of who PersonA shall pay SomeAmount to, e.g. “PersonA pays
SomeAmount to PersonB”. The ability to express the target subject of an action is a
critical one, and likely desirable, for contracts of any significant complexity. However, as
CoLa is one of the source languages and it’s syntax does not allow for the specification
of the target subject for an action, we must allow for statements with or without a
second subject.

Another major difference that needed to be addressed was CoLa’s requirement of express-
ing a deadline in each statement, e.g. “PersonA shall pay SomeAmount at SomeDate”.
Lexon, while allowing statements based on temporal conditions such as “If the date is
equal to SomeDate, then PersonA pays SomeAmount to PersonB”, does not require the
specification of a temporal deadline for each statement. Therefore, the intermediate
syntax must allow for the expression of a statement with or without temporal limitations.

The last significant deviation between the two languages that needed to be addressed at
the syntax level is CoLa’s ability to not only allow for the enabling of action statements
but also for their voiding, e.g. “It is not the case that PersonA shall pay SomeAmount at
SomeDate”. This concept is fundamental to CoLa’s logic, and as such the intermediate
syntax must contain it. Lexon, however, allows only for the expression of enabling action
statements. Thus, the combined syntax will adopt CoLa’s design in allowing actions
statements to be of enabling or voiding nature.
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4.2.1.1 Backus-Naur Form (BNF) Syntax

The intermediate syntax is formally defined using Backus-Naur Form (BNF). This
syntax includes intentional ambiguities to accommodate unique features of each source
language, such as CoLa’s deontic conditions (e.g. “If it is the case that PartyA shall pay
SomeAmount at SomeDate, then...”) and is in the form of the Python Classes used for
it’s implementation. The primary role of this intermediate syntax is to enable accurate
mapping from an Abstract Syntax Tree (AST) generated by the parsers for Lexon and
CoLa into a common format. The ambiguities that were present in the original contract
have already been addressed during the creation of the AST, thus eliminating any
uncertainty in the understanding of the text.

hcontracti ::= Contract([hstatement-listi], [hdefinition-listi], [hstate-listi])

hstatement-listi ::= hstatementi | hstatementi, hstatement-listi

hdefinition-listi ::= hdefinitioni | hdefinitioni, hdefinition-listi

hstate-listi ::= hstatei | hstatei, hstate-listi

hstatementi ::= Statement(hone-sbj-stmti)
| TemporalStatement(hone-sbj-temp-stmti)
| TwoSubjectStatement(htwo-sbj-stmti)
| TemporalTwoSubjectStatement(htwo-sbj-temp-stmti)
| ConditionalStatement(hconditioni, hstatementi)

hone-sbj-stmti ::= htesti, hsubjecti, hmodal-verbi, hverbi, hobjecti

hone-sbj-temp-stmti ::= htesti, hsubjecti, hmodal-verbi, hverbi, hobjecti,
htemporal-expressioni

htwo-sbj-stmti ::= htesti, hsubjecti, hmodal-verbi, hverbi, hobjecti, hprefix i,
hsubjecti

htwo-sbj-temp-stmti ::= htesti, hsubjecti, hmodal-verbi, hverbi, hobjecti, hprefix i,
hsubjecti, htemporal-expressioni

hconditioni ::= ActionCondition(hone-sbj-condi)
| TemporalActionCondition(hone-sbj-temp-condi)
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| TwoSubjectActionCondition(htwo-sbj-condi)
| TemoralTwoSubjectActionCondition(htwo-sbj-temp-condi)
| StatementCondition(hstatementi)
| StateCondition(htesti, hstatei)
| ExpressionCondition(htesti, hexpressioni)
| AndCondition([hcondition-listi])
| OrCondition([hcondition-listi])

hcondition-listi ::= hconditioni | hconditioni, hcondition-listi

hone-sbj-condi ::= htesti, hsubjecti, hverb-statusi, hobjecti

hone-sbj-temp-condi ::= htesti, hsubjecti, hverb-statusi, hobjecti, htemporal-expressioni

htwo-sbj-condi ::= htesti, hsubjecti, hverb-statusi, hobjecti, hprefix i, hsubjecti

htwo-sbj-temp-condi ::= htesti, hsubjecti, hverb-statusi, hobjecti, hprefix i, hsubjecti,
htemporal-expressioni

hdefinitioni ::= hbasic-definitioni
| hconditional-definitioni

hdefinition-listi ::= hdefinitioni
| hdefinitioni, hdefinition-listi

hbasic-definitioni ::= IsDefinition(hsubjecti, hvaluei)
| EqualsDefinition(hsubjecti, hexpressioni)

hconditional-definitioni ::= ConditionalDefinition(hconditioni, [hdefinition-listi])

hstatei ::= State(hconditioni, hlabeli)

hsubjecti ::= Subject(hlabeli)

hexpressioni ::= NumericExpression(hnumeric-objecti, hnumeric-operatori,
hnumeric-objecti)

| TemporalExpression(htemporal-operatori, htemporal-objecti)
| PropertyExpression(hsubjecti, hpropertyi)
| BooleanExpression(hsubjecti, hverb-statusi, hcomparisoni,

hsubjecti)

hnumeric-objecti ::= hsubjecti | hnumberi
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htemporal-objecti ::= hsubjecti | htimei

hobjecti ::= hsubjecti

hprefix i ::= To | From | Into

hcomparisoni ::= Greater Than | Less Than | More Than
| Equal | Not Equal | Less Or Equal | More Or Equal

hnumeric-operatori ::= Plus | Minus | Times | Divided

htemporal-operatori ::= During | On | Throughout | Within | Before | After | By

htesti ::= True | False

hevaluationi ::= True | False | Unknown

hmodal-verbi ::= MAY | SHALL | SHOULD | SHANT | MUST

hverbi ::= pay | deliver | transfer | fix | notify | issue | give
| demand | appoint | envoke | increase | decrease | change
| charge | return | certify

hverb-statusi ::= paid | delivered | transferred | fixed | notified
| issued | given | demanded | appointed | envoked | increased
| decreased | changed |charged | returned | certified

hlabeli ::= hstringi
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4.2.2 Translating Lexon

As described in Section 2.1.1, Lexon is a highly readable and powerful CNL, allowing for
the expression of smart contracts through a syntax that is very close to natural English,
enabling the lay person without a background in computer science or law to read and
understand a contract written in it.
However, it is crucial to recognise Lexon’s dual purpose: to seamlessly serve as both legal
agreement and smart contract. This duality, inspired by the idea that “the contract is
the code”, underscores Lexon’s inherent purpose, to generate executable code. Such code
does not simply define the concepts of an agreement and what each party should do, but
sets the act of the fulfilment of the agreement. Thus, Lexon describes the performance
of a contract, more than the contract itself, which has implications on how we need to
interpret it in our model.

4.2.2.1 The Deontics of Lexon

With Lexons, design being tailored towards the generation of executable code for
smart contracts, this design distinguishes it from traditional contracts, especially in its
approach to deontic elements.

For example, Lexon forgoes the explicit prohibition of an action. Given its executable
nature, actions that are not explicitly permitted are never written. Furthermore, instead
of imposing obligations, Lexon delineates permissible actions under specific conditions.
Thus, the word May, which traditionally signals permission, serves a somewhat different
purpose in Lexon, where it can be used within a clause.

Once parsed, a clause written in a Lexon contract is interpreted as a function that
encompasses the logic of the clause as a distinct piece of code. Unlike the code
generated by the recitals, which gets executed as the first action of the performance,
a clause function has no set time of execution. Any contractual party may call the
function at any time once the performance of the contract has begun, essentially
equating the act of calling or envoking a clause with a permission. Listing 4, contains an
altered version of a Lexon clause provided by Diedrich [3], and its compiled Solidity code.
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From this example, it is evident that the purpose of May in Lexon, is not to signal
a permission, but rather to act as a guard for which party can trigger the execution of
specific actions covered by the clause. This is necessary because it enables the exclusivity
of actions for individual parties. Referring to the Solidity code in Listing 4, only the
Arbiter can trigger the execution of lines 5 and 6, while only the payer can trigger the
execution of line 3. This also means that while a third party such as the Payee may call
the function, this would result in no action being taken as they do not fulfil the guard
conditions.

1 CLAUSE: Pay Out.
2 The Payer may pay the escrow to the Payee.
3 The Arbiter may pay from escrow the Fee to themselves,
4 and afterwards pay the remainder of the escrow to the Payee.

1 function Pay_Out() external {
2 if (msg.sender == payer){
3 payee.transfer( address(this).balance );
4 }else if (msg.sender == arbiter){
5 arbiter.transfer(fee);
6 payee.transfer(address(this).balance);
7 }else{
8 require(false);
9 }

10 }

Listing 4: Altered Lexon Pay Out clause and generated Solidity code of escrow agreement
[3], highlighting the use effect of May statements.

The generated code also underscores the sequential nature of code execution in a syn-
chronous language such as Solidity [28]. This entails that each action can only be taken, if
the previous action is completed, e.g. the arbiter can only transfer the rest of the escrow,
once the fee is paid to themselves. Therefore, when sequential actions are transferred into
the contractual model, any action statement that follows another must be conditional on
the fulfilment of the previous statement.
Sequential code execution has another significant implication as once a code block starts
execution, all subsequent code within it will execute, unless prevented by a further nested
condition. This means that although the first action within a code block might represent
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a permission (e.g. it is a permission for the arbiter to pay a fee from the escrow to
themselves), the subsequent code within the same code block describes obligations. This
distinction is crucial when translating Lexon into the contractual model, as it affects the
interpretation of the parties’ responsibilities. For example, to stay faithful to the spirit
of the Lexon contract, once the Pay Out clause is envoked, the permission for the arbiter
to pay the fee from the escrow to themselves stands, but once they choose to do so, they
are obligated to transfer the remainder of the escrow to the payee.

4.2.2.2 Structure of a Lexon Contract

The structure of Lexon introduces further intricacies that must be taken into account
when translation into the logical model. A Lexon contract, also called a Lexon, is based
on the following high-level structure [12]:

1. Sentence ! Subject + Predicate [, Predicate]
2. Predicate ! Verb + [Object]
3. Lexon ! Head + Terms + Contract
4. Terms ! Head + Definitions + Recitals + Clause
5. Contract ! Head + Definitions + Recitals + Clause
6. Clause ! Head + Definitions + Permissions + Conditions + Statement

In Lexon, terms define the clauses and recitals that will be applicable to each constituent
contract. This is needed as Lexon has the ability to express different contracts for
different stakeholders within the same programme, e.g. a contract “per member” or “per
payee”, all of which share the common functionality laid out in the terms.

Further diverging from traditional legal interpretation, the term Recitals, typically
referring to an accounting of contextual facts or events, in Lexon describes the code that
will be executed before any other actions can be taken in the contract.

Another noteworthy detail about the structure of Lexon is the distinction between the
actions specified in a clause and the ability to invoke the clause function itself. For
example, a clause might specify an action for a particular party, such as “Arbiter pays
someAmount to Payee”, however, the clause function itself does not inherently restrict
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who can call it and trigger its execution. Although “May” statements within a clause can
restrict certain actions to specific parties, this is not mandatory. As such, a clause could
include general statements like “The contract is terminated,” which do not specify any
particular party. Similarly, a statement like “The Arbiter pays someAmount to Payee,”
if not accompanied by additional conditions, could technically be triggered by any party
involved in the contract. This implies that, in general, it is not possible to know which
party can invoke a clause but only that it can be invoked.

4.2.2.3 Rules for Lexon Translation

Based on the previous discussion, the following list outlines the key rules that are applied
during the process of translating a Lexon contract into the intermediate syntax.

• Every statement in the Lexon contract is considered to be an enabling statement,
and is translated based on the statement type.

– Pay, Return, Increase and Decrease statements are converted to two subject
statements.

– Fix, Appoint and Certify statements are converted to one subject statements.
– Type definitions (e.g. “PersonA is a ’person’ ”) are ignored.
– Be statements (e.g. “The Bet is terminated”) are converted to definitions.

• If the contract contains recitals, the first statement in the recitals is conditional on
a “Contract Active” substate.

• A distinct “Recitals Met” substate exists, conditional on the completion of the
fulfilment of the last recital statement.

• The first statement of any clause or any “May” statements within it are dependent
on a “Clause Invoked” substate being active.

• For every “May” statement in a clause, the first action of the statement is consid-
ered a permission, with all subsequent statements that fall within the same “May”
statement are considered as obligations.

• The first statement of a clause is considered a permission, with any subsequent
non-“May” statement being obligations.

• Any sequential statements in the recitals or a clause are modelled as statements
dependent on the completion of the previous statement.
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4.2.3 Translation of Lexon Contracts

The translation of Lexon into the intermediate syntax was achieved through the following
methodology. The Lexon Compiler [4] was emplyoed to output the AST of a Lexon
contract in JSON format into a text file. This text file is then processed by the Python
API in Listing 15, which converts the contract into the corresponding representation in
the intermediate syntax based on the rules set out in the previous sections.

The Lexon translation process was a significant hurdle in the project due to the multitude
of conversion rules required to represent a Lexon contract as faithfully as possible in the
Petri Net. The process was further complicated by the irregular structure of the Lexon
AST when rendered in JSON format, an example of which can be found in Listing 11.
A particular complication introduced by its unconventional format relates to the deter-
mination of the subject of a statement. For instance, the recitals of the escrow agreement
in Listing 1, “The Payer pays an Amount into escrow, appoints the Payee, appoints the
Arbiter...”. Once transformed into the AST, this results in five distinct statements:
(i) “Payer pays an Amount into escrow”; (ii) “,”; (iii) “appoints the Payee”; (iv) “,”; (v)
“appoints the Arbiter”. Here, a “,” statement indicates that the next statement is part
of a sequence of statements, each of which describes an action performed by the same
subject as the previous statement. Crucially, only the initial statement identifies the
primary subject of these actions, while subsequent statements lack any reference to the
subject.

Python was the language of choice for converting the Lexon AST into the intermediate
syntax, selected both for its handling of intricate data structures and for the author’s
familiarity with it. Although employing Lexon’s source language, Rust, might have
simplified the process, the author’s lack of experience with Rust rendered this option
impractical within the project’s time frame.
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4.2.4 Translating of CoLa Contracts

The translation of CoLa contracts proved to be a straightforward task because the
intermediate syntax is based mainly on CoLa’s formal syntax [2]. The conversion process
was further simplified, as CoLa was designed for the expression of legal contracts, and
therefore, unlike Lexon, no assumptions were required for the interpretation of a CoLa
contract.

The methodology adopted to translate a contract written in CoLa into intermediate
syntax is as follows: A Miranda script (CoLa source language) was developed. This script,
available in Listing 13, utilises the AST output of the CoLa parser, transforming each
contract component into its corresponding format within the intermediate syntax. Once
all components had been converted to the appropriate format, the script produced Python
code that represents the contract in the class-based implementation of the intermediate
syntax. This code could then be incorporated into a Python file and executed to generate
the appropriate Petri Net.

4.3 Petri Net Generation and Simulation

Upon conversion of the contract into the intermediate syntax, the Python API available
in Appendix A.1.5, is used to generate the corresponding Petri Net, rendering all the
required place nodes, transitions and arcs according to the logic laid out in Section 4.1.
The implementation of the Petri Net in can be found in Listing 12.

Following the conversion process, the Python API enables contractual performance
simulation. This is achieved by outputting a tabular representation of the various com-
ponents of the Petri Net contract, as shown in Figure 4.10. Based on the components
given by this output, the user can register an event by entering the ID of a condition
from this table and designate a new value for this condition.

Once a condition has been updated, it’s corresponding place node, will be updated in
the Petri Net, providing it with the appropriate number of tokens, after which a breadth
first search algorithm similar to Listing 5, was implemented to ensure that transitions
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trigger in the correct order. Once the token flow has finished propagating, the updated
Petri Net is rendered, and the updated state of the contract is printed out to the user in
a new table. This process continues until the user cancels the simulation; thus, ending
the simulated scenario.

Figure 4.10: Screenshot of tabular output of components of the CoLa bike delivery
agreement in Listing 9.

Function CascadeUpdate(placenode)
Que = OutgoingEdges(placenode)
While Que is not empty

Arc = PopFirstItem(Que)
Transition = TragetNode(Arc)
If canFiretransition(Transition)

FireTransition(Transition)
End If
Append(Que, OutgoingEdges(Transition))

End While
End Function

Input: UpdatedConditionplacenode
fireplacenode(UpdatedConditionplacenode)

Listing 5: Pseudo code of BFS algorithm used for token propagation.
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5 | Results and Evaluation

5.1 Verification

A functional testing approach was selected for project validation, as the various compo-
nents were highly intertwined with each other. In total, 3 Lexon Contracts and 6 CoLa
Contracts were converted into Petri Nets, each of which was tested against at least 3
different scenarios in performance simulation.

5.1.1 Contract Conversion

The contract conversion and Petri Net generation process were tested as follows. Con-
tracts written in CoLa and Lexon were translated into intermediate syntax, from which
the representative Petri Net was generated. The Python API used for Petri Net gen-
eration additionally generates an overview of all statements, definitions, and conditions
within the contract, as shown in Figure 4.10. This overview is compared against the
original source contract and AST, to ensure that all components and conditional links
are present in the Petri Net. An example of the generated Petri Net used for a test can be
seen in image (1) of Figure 5.1, with the extensive set of test cases available in Appendix
A.2.

5.1.2 Performance Simulation

Performance simulation testing was carried out to ensure that the logical model was able
to accurately represent the contract as a Petri Net. This was achieved by simulating
each converted contract against a set of scenarios consisting of a series of events through
an interactive text interface. After each event, the performative state of the contract
highlighted by the updated Petri Net was compared against the expected state of the
contract (i.e., expected outstanding obligations, permissions, and prohibitions). If the
generated output matches the expected state of the contract at each state, then the
Petri Net was considered to be a faithful representation of the contract. The complete
set of test cases is available in the Appendix A.2, with an example simulation shown in
Figure 5.1.
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Figure 5.1: Performance simulation contract in Listing 3. (1) Initial state of the contract
(2) State of contract after event declaring “PartyB shall pay ...” as True; (3) State of
contract after event declaring condition “PartyA shall pay ...” as True; (4) State of
contract after events declaring “PartyB paid more...” as False and “PartyA paid more...”
as True; (5) State of contract after Event declaring “ExcessParty paid...” as True.
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5.2 Critical Evaluation

The following section provides a critical evaluation of the methodology developed for
contract conversion, representation of the contract as a Petri Net, and performance sim-
ulation.

5.2.1 Contract Conversion

The methodology developed in Section 4 allowed the successful translation of contracts
written in CoLa and Lexon into an intermediate syntax that could be used to generate a
representative Petri Net of the source contract. While the tests in Appendix A.2 found
that all CoLa contracts were faithfully represented in the final Petri Net output, this
was only partially the case for Lexon contracts. The Lexon contract conversion process
suffered due to the many assumptions described in Section 4.2.2 and due to the use of
the Lexon AST for syntax translation.
Consider the Returnable Bet Lexon contract in Listing 18. This contract contains the
statement “the Bet is deemed closed”, whose representation in the Lexon AST is shown
in Listing 6. Figure A.17 shows the Petri Net generated for this contract, where the
statement is represented through a place node with the label “Bet IS Undef”. Although
this interpretation is faithful to the Lexon AST representation of the contract, it does
not capture the essence of the written contract text.

1 {
2 "stmt": {
3 "Be": {
4 "def": "Undef",
5 "expression": null}},
6 "fillers": ["the "],
7 "original": "the Bet is deemed Closed",
8 "varnames": ["Bet"]
9 }

Listing 6: Excerpt of Lexon AST of UCC Financing Statement [3], showing AST repre-
sentation of “Bet is deemed Closed” as Undef.
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5.2.2 Petri Net Model

The model for representing a contract as a Petri Net proposed in Section 4 resulted in a
Petri Net that can faithfully represent simple agreements. However, the model currently
suffers from a variety of limitations.

One such limitation is due to the model being designed to produce a Petri Net that is
accessible and easy to understand, leading to introduction of read and inhibitor arcs in
Section 4.1.2 to reduce the number of arcs and nodes in the system. Specifically, the
introduction of read-only arcs for conjunction and disjunction conditions resulted in a
potential problem where once a conjunction or disjunction condition place node holds
a token, it will indefinitely maintain it. An example of this can be observed in image
(3) of Figure 5.1, as both obligations are voided, the place node of the ’and’ condition
continues to hold the token when logically it should not.

Various implementations were considered to address this issue, one of which was the
use of normal arcs to connect conjunction and disjunction conditions to transition and
thus consuming the token if the transition fires. This approach is unsuitable, as it
causes the token of the condition to be consumed by either of the connected voiding
transitions, rendering the other voiding transitions unable to fire, and thus only one
of the two obligations being voided. Another solution to this problem is the inclusion
of a sink transitions for conjunction and disjunction conditions, as shown in Figure
5.2. While this would result in the desired effect and remove the token from the
conjunction place node, the inclusion of such a sink transition would cause a significant
increase in the number of nodes and arcs, reducing the overall readability of the Petri Net.

Figure 5.2: Example of a sink transition for an OR condition. The conditional place
node (A _ B) is connected to sink transition enabled if ((A _B) ^ ¬A ^ ¬B).
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It is worth noting that while this issue causes a condition to incorrectly hold a token in
specific cases, the inclusion of voiding and fulfilment transitions cause this to not have
an effect on the performance simulation. Figure A.8 offers such an example, as where
the and condition holds the token when it should not but the statement enabled by the
condition “ExcessParty SHALL pay ...” will not be falsely enabled by this as the voiding
transition causes any token at the statement place node to be immediately consumed.

5.2.3 Performance Simulation

The performance simulation of a contractual Petri Net as shown in Figure 5.1 provides
insightful information on the performance state of a contract, clearly highlighting the
known facts (i.e. value of conditions) and expectations of each party given a series of
events. However, the current implementation suffers from several issues.

The registration process currently only allows for the registration of one event at a time,
assuming that the events do not occur simultaneously. This assumption is flawed, as
our implementation of an event is the process of declaring a fact to be true or false, i.e.
“PartyA paid SomeAmount...” or “PartyA paid more than PartyB”. The flaw in this
becomes apparent in the ISDA master agreement in Figure 5.1, which has the two place
nodes “PartyA paid more than PartyB” and “PartyB paid more than PartyA”. When it is
established which party paid more, both statements should be updated simultaneously
in a single event.

Furthermore, the simulation process currently does not have the ability to prevent
illogical inputs registered by the user. This is highlighted in the simulation of the
ISDA master agreement in Figure A.2 where two mutually exclusive facts, “PartyA paid
more than PartyB” and “PartyB paid more than PartyB”, were declared true. However,
such contradictory declarations result from incorrect input by the oracle; they are not
inherent flaws of the model itself.

Lastly, the model was designed to not infer that which is not specified, e.g. a default state
if an obligation is not met. This means that actions can be registered out of sequence, for
example, Figure 5.5 where one could register the condition “Bob delivered bicycle.....” as
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true even if the corresponding obligation does not stand without the system flagging an
error to the user. It is so far unclear whether this is a desirable behaviour of the model,
as the scenario where Bob delivers a bicycle even though he is not obligated to do so,
while unlikely, can occur. It is not possible for us to state what the consequences of such
a scenario are, unless the contract itself mentions it.

5.3 Controlled Natural Languages and the Legal Bug

A shift towards computable contracts expressed through a controlled natural languages
(CNL) promises various advantages. One of these advantages could be easing the
discovery and correction of what we will call the “legal bug”.

In the realm of software, a “bug” denotes an error or flaw within a computer programme.
The implications of these bugs can vary in severity from substantial errors that com-
promise the system’s entire logic, like neglecting to account for an edge case, to minor
glitches that do not disrupt the overarching logic. A notable instance of such a bug led
to the Ariane 5 rocket crash in 1996, incurring a loss exceeding US $370 million [29].

A similar issue can be found in legal contracts, where nuanced variations in language can
drastically alter, and occasionally misconstrue, the intended meaning of a statement.
This could be observed in a Canadian legal case, where a single comma in a 14-page
contract caused the wrongful interpretation of a cancellation clause, costing Rogers
Communications close to 1 million Canadian dollars [30].

Employing CNL in contract drafting does not eliminate the risk of introducing such
“legal bugs” into a contract. Paradoxically, the use of a CNL might even amplify the
dangers of ill-crafted contracts because of its strict interpretive nature leaving little room
for disputing the deontic logic based on ambiguous phrasing. However, the benefit of the
CNL becomes apparent when integrated with the developed Petri Net model. Within
this framework, “legal bugs” that might escape human scrutiny in textual form, but
diverge from the contracts intended outcome, can be spotted through the visualisation
and performance simulation of the contract.
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During the analysis, two potential “legal bugs” in the translated CoLa contracts were de-
tected. The subsequent section will elaborate on these, highlighting how subtle linguistic
missteps can inadvertently alter or uphold specific permissions or obligations and how
these mistakes become more apparent with Petri Net visualisation.

5.3.1 ISDA Master Agreement

Fattals interpretation of the ISDA master agreement in CoLa can be seen in Listing
3. This agreement produces the Petri Net shown in Figure 5.3 and demonstrates the
existence of what could be considered a “legal bug”, namely, that without any other facts
or knowledge the original contract states that the obligations of the ExcessParty to pay
the ExcessAmount holds no matter what.

Figure 5.3: Petri Net of ISDA master agreement by Fattal [2] highlighting a “legal bug”
in the form of an unconditional obligation for the ExcessParty.
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The cause of this is highlighted in Listing 7, as according to the parsing principles of CoLa,
component [5] is interpreted as a separate component and therefore unlike component [3]
and [4], it is not conditional on conditions [1] and [2].

1 IF [1] it is the case that PartyA shall pay AMOUNT 'A' on the 01 January 1970
2 AND
3 [2] it is the case that PartyB shall pay AMOUNT 'B' on on the 01 January 1970
4 THEN[3] it is not the case that PartyA shall pay AMOUNT 'A' on on the 01 January

1970,!

5 AND
6 [4] it is not the case that PartyB shall pay AMOUNT 'B' on on the 01 January

1970,!

7 C-AND
8 [5] it is the case that ExcessParty shall pay AMOUNT "ExcessAmount" on on the

01 January 1970,!

9 C-AND
10 ...

Listing 7: Excerpt of the CoLa interpretation of the ISDA master agreement by [2].

Whether it is intended that the obligation of the ExcessParty stands unconditionally
regardless of the previous actions, is ultimately dependent on the intent of the person
drafting the contract.

For illustration purposes, however, the same contract will be expressed with a slight
change in wording. By changing the C-AND [5] into an AND [5] in Listing 8, the
ExcessPartys obligation is made dependent on the previous conditionals, thus changing
the underlying logic of the contract, as can be seen in Figure 5.4.

1 IF [1] it is the case that PartyA shall pay AMOUNT 'A' on the 01 January 1970
2 AND
3 [2] it is the case that PartyB shall pay AMOUNT 'B' on the 01 January 1970
4 THEN[3] it is not the case that PartyA shall pay AMOUNT 'A' on the 01 January 1970
5 AND
6 [4] it is not the case that PartyB shall pay AMOUNT 'B' on the 01 January 1970
7 AND
8 [5] it is the case that ExcessParty shall pay AMOUNT "ExcessAmount" on the 01

January 1970,!
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9 C-AND
10 ...

Listing 8: Excerpt of modified ISDA master agreement from Listing 7, making component
[5] conditional by changing the C-AND to an AND in line 7.

Figure 5.4: Petri Net of modified ISDA master agreement in Listing 8, removing the
unconditional obligation.

For a human reader, keywords such as C-AND andAND may seem similar enough to
avoid appearing suspicious at first glance, but the impact made by the choice of language
on the general logic of the contract is significant.

5.3.2 Bike Delivery

Another possible “legal bug” could be found in the contract in Listing 9 , obtained from
the CoLa uni tests [2].

1 IF [1a] it is the case that Alice paid 100 pounds on the 1 April 2021
2 OR
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3 [1b] it is the case that Alice paid 120 pounds on the 1 April 2021
4 THEN[2] it is the case that Bob must deliver a bicycle on the 5 April 2021
5 C-AND
6 [3a] it is the case that Bob may deliver a receipt on the 5 April 2021
7 AND
8 [3b] it is the case that Bob is forbidden to charge a delivery_fee on the 5

April 2021.,!

Listing 9: CoLa contract describing a simple bike delivery [2].

Figure 5.5: Petri Net of simple bike delivery in Listing 9, highlighting potential legal bug
through unconditional expectations.

Figure 5.5 illustrates the Petri Net generated for this contract, where it could be argued
that it does not make sense to have permission to deliver a receipt if Alice did not
pay the funds and Bob did not need to deliver the bike. It might make more sense to
make the permission to deliver the receipt and the prohibition of charging a delivery fee
conditional on Alice paying. In Listing 10 this modified contract is presented, with a
change in wording from C-AND to AND in line 5 and 7.

The Petri Net resulting from this modified contract, shown in Figure 5.6, clearly shows
that the updated wording caused a significant change in the overall logic of the contract.
Once again, this raises the question of which contract is the correct one, a question which
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can only be answered by the person drafting the contract in accordance with their desires.

1 IF [1a] it is the case that Alice paid 100 pounds on the 1 April 2021
2 OR
3 [1b] it is the case that Alice paid 120 pounds on the 1 April 2021
4 THEN[2] it is the case that Bob must deliver a bicycle on the 5 April 2021
5 AND
6 [3a] it is the case that Bob may deliver a receipt on the 5 April 2021
7 AND
8 [3b] it is the case that Bob is forbidden to charge a delivery_fee on the 5

April 2021,!

Listing 10: Modified bike delivery agreement, making all statements conditional.

Figure 5.6: Petri Net of modified bike delivery agreement in Listing 10.
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6 | Conclusion

6.1 Project Evaluation

All core objectives for the project, laid out in Section 1.4, have been met. A compre-
hensive review of the literature on the state of computable contracting is presented
in Section 2.3. The literature review covered the languages used for the drafting of
smart and computable contracts and highlighted some previously unaddressed research
questions. Section 3.1 summarised the research gap that the logical representation of
CNL contracts as Petri Nets aims to bridge, followed by an outline of the requirements
for the logical contract model in Section 3.2.

Section 4.1 adresses the creation of the logical contract model as a Petri Net, highlighting
the challenges, design requirements, and implementation details of the undertaking.
Section 4.2.1.1 saw the introduction of a formal syntax used for Petri Net generation,
capable of expressing the linguistic features of both source languages. The methodology
employed for the translation of CoLa and Lexon written contracts from their respective
ASTs was detailed in Section 4.2.4 and Section 4.2.2 with details of the Petri Net
generation and performance simulation process given in Section 4.3.

Section 5.1, covered the test strategy implemented to evaluate the project success. A
critical evaluation of the project was conducted in Section 5.2, finding that while the
developed methodology was able to convert contracts written in either source language
into a Petri Net, the final output was completely faithful to the source contract only
for CoLa written contracts. The section also detailed how the conversion process of
Lexon, due to the many assumptions required for it and the use of its AST for syntax
translation, lead to results that are not always entirely faithful in representing the spirit
of the source contract. The section further discussed the successful implementation of
the Performance Simulation of contracts as Petri Nets. This simulation resulted in an
output from which the underlying logic of a contract and the outstanding expectations
for each party during contract performance could be understood. Section 5.3 expanded
on a potential benefit of using the developed model for contract drafting, highlighting
how the visualisation and performance simulation of a contract can enable the spotting
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of what is termed “legal bugs”, where misssteps in semantics, which might espace human
interpretation, can significantly and adversally affect a contracts logic.

6.2 Future Work

A major challenge encountered during the project was the use of the selected source
languages. While CoLa offers insight into what a CNL for lawyers might resemble, it
is not mature enough to encompass diverse legal notations and concepts. Similarly,
Lexon’s design, with its focus on actions verifiable on the Blockchain, limits the legal
concepts that can be cleanly expressed in it. A more refined CNL, tailored towards
computable contracts and legal professionals, is required to allow for the expression of
more complicated real-world contracts. Furthermore, a model based on a single source
language could be further optimised and streamlined as it would not have to encompass
the unique concepts and functionality expressed in two different languages.

There are possibilities to enhance the existing model, amplifying its versatility and
functionality. For instance, modifying Place Nodes to support multiple tokens at once
may allow complex event representations, such as “If Party A misses payments 3 times,
then...”. Here, the place node might denote “Party A missed payment”, and be connected
to the Transition through an arc weighted at 3. This would require the Place Node
to obtain 3 tokens before the Transition can fire. Furthermore, an exploration of the
trade-off between model capability and output readability is critical to find suitable
solutions to issues such as wrongful keeping of tokens for conjunction and disjunction
place nodes, described in Section 5.2.2. This section also describes a limitation of the
current model, where events can only update the value of one condition at a time.

The projects’ central ambition was to fascilitate the automatic representation of a
CNL contract’s geometry through a Petri Net. This objective was achieved, laying a
foundation on which further applications could be built. Such applications could include
the integration of a theorem prover, avoiding illogical user inputs, as detailed in Section
5.2.3, and a knowledge service to autonomously register events and update node values.
Not only could this facilitate automated clarification regarding the expected behaviour
of parties during contract performance, but might also pave the way for semi or fully
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automated performance mechanisms.

Lastly, there are several opportunities to develop methodologies for contractual analysis
using the model. Such analysis may include the detection of inconsistencies, the com-
parison of clauses using different semantics, or even the application of machine learning
algorithms aimed at simulating event chains, pinpointing overlooked scenarios or poten-
tial contractual loopholes.
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1 [{"name": "Certify",
2 "payable": false,
3 "statements": [{"stmt": {
4 "May": ["filing_office", [{
5 "stmt": { "Certify": ["", ["File_Number"]]
6 },
7 "fillers": [],
8 "original": "certify the File_Number",
9 "varnames": []}]]},

10 "fillers": ["The "],
11 "original": "The Filing_Office may certify the File_Number.",
12 "varnames": []}],
13 "ret": []},
14 { "name": "Set_File_Date",
15 "payable": false,
16 "statements": [{
17 "stmt": {
18 "May": ["filing_office",[{
19 "stmt": {"Fix": {
20 "ops": [],"terms": [{
21 "ops": [], "factors": [{"Time": "now"}]}]}},
22 "fillers": ["the "],
23 "original": "fix the Initial_Statement_Date as the current time",
24 "varnames": ["Initial_Statement_Date"]}]]},
25 "fillers": ["The "],
26 "original": "The Filing_Office may fix the Initial_Statement_Date as the

current time.",,!

27 "varnames": []}],
28 "ret": []},
29 {"name": "Set_Lapse",
30 "payable": false,
31 "statements": [
32 {"stmt": {"May": ["filing_office", [{
33 "stmt": {"Fix": {
34 "ops": [], "terms": [{"ops": [], "factors": [
35 {"Sym": {
36 "sym": "now",
37 "given": false,
38 "filler": ""}}]}]}},
39 "fillers": ["the "],
40 "original": "fix the Lapse_Date as now",
41 "varnames": ["Lapse_Date"]}]]},
42 "fillers": ["The "],
43 "original": "The Filing_Office may fix the Lapse_Date as now.",
44 "varnames": []}],
45 "ret": []}]

Listing 11: Excerpt of Lexon UCC Financing Statement Contract (Listing 19) AST in
JSON format.
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A.1 Source Code

A.1.1 Petri Net

1 import collections
2 import textwrap
3 import datetime
4 from graphviz import Digraph
5

6 def node_from_list(node_label: str, node_list: list) -> "Place | Transition":
7 """Get node object from list based on node label"""

8 ind = [n._label for n in node_list].index(node_label)
9 return node_list[ind]

10

11 class Edge:
12 """Class representing a connection edge in a Petri net."""

13

14 def __init__(self, from_node: "Place | Transition", to_node: "Place |
Transition", weight: int = 1):,!

15 self._from_node = from_node
16 self._to_node = to_node
17 self.weight = weight
18 self._hash_id = Edge._hash(from_node, to_node)
19 self.arrow_head = "normal"
20

21 def _type(self) -> str:
22 """Returns the type of the edge."""

23 return "connect"
24

25 def __repr__(self) -> str:
26 """Returns a string representation of the edge."""

27 return self._hash_id
28

29 @staticmethod
30 def _hash(from_node, to_node) -> str:
31 """Generate a hash ID for an edge to ensure edge ids are unique."""

32 return f"C - {from_node._id} - {to_node._id}"
33

34 @staticmethod
35 def connect(from_node, to_node):
36 """Connect nodes with an edge if they aren't already connected."""

37 edge_hash = Edge._hash(from_node, to_node)
38 if edge_hash not in [e._hash_id for e in from_node._out_edges]:
39 edge = Edge(from_node, to_node)
40 from_node._out_edges.append(edge)
41 to_node._in_edges.append(edge)
42
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43 def canFire(self) -> bool:
44 """Check if the edge can be triggered."""

45 return self._from_node.canFire()
46

47 def active(self) -> bool:
48 """Check if the edge is active."""

49 return self._from_node.active()
50

51

52 class InhibitorEdge(Edge):
53 def __init__(self, from_node: "Node | Place",
54 to_node: "Node | Transition", weight: int = 1):
55 super().__init__(from_node, to_node, weight) # type:ignore

56 self.arrow_head = "dot"
57

58 def _type(self) -> str: return "inhibit"
59

60 def canFire(self) -> bool:
61 """Check if the edge can be triggered."""

62 return self._from_node.canFire() == False and self._from_node.active() ==
True,!

63

64 @staticmethod
65 def _hash(from_node, to_node) -> str:
66 """Generate a hash ID for an edge to ensure edge ids are unique."""

67 return f"I - {from_node._id} - {to_node._id}"
68

69 @staticmethod
70 def connect(from_node: "Node | Place",
71 to_node: "Transition | Place") -> None:
72 """Connect nodes with an edge if they aren't already connected."""

73 edge_hash = InhibitorEdge._hash(from_node, to_node)
74 if edge_hash not in [e._hash_id for e in from_node._out_edges]:
75 edge = InhibitorEdge(from_node, to_node)
76 from_node._out_edges.append(edge)
77 to_node._in_edges.append(edge)
78

79 class ReadEdge(Edge):
80 def __init__(self, from_node: "Node | Place",
81 to_node: "Node |Transition") -> None:
82 super().__init__(from_node, to_node) # type:ignore

83 self.arrow_head = "odot"
84

85 def _type(self) -> str: return "read"
86

87 @staticmethod
88 def _hash(from_node, to_node) -> str:
89 """Generate a hash ID for an edge to ensure edge ids are unique."""

90 return f"R - {from_node._id} - {to_node._id}"
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91

92 @staticmethod
93 def connect(from_node: "Place", to_node: "Transition | Place") -> None:
94 """Connect nodes with an edge if they aren't already connected."""

95 edge_hash = ReadEdge._hash(from_node, to_node)
96 if edge_hash not in [e._hash_id for e in from_node._out_edges]:
97 edge = ReadEdge(from_node, to_node)
98 from_node._out_edges.append(edge)
99 to_node._in_edges.append(edge)

100

101

102 class Node:
103 """Base class representing a node in a Petri net."""

104 cnt = 0 # Counter for unique node IDs

105

106 def __init__(self, label: str, in_edges: list, out_edges: list, active=True):
107 self._id = Node.cnt
108 self._label = label
109 self._active = active
110 self._in_edges = in_edges if in_edges else []
111 self._out_edges = out_edges if out_edges else []
112 self._color = 'white'
113

114 Node.cnt += 1
115

116 def connect(self, target):
117 """Connect to another node through normal edge"""

118 Edge.connect(self, target)
119

120 def read(self, target):
121 """Connect to another node through read edge"""

122 ReadEdge.connect(self, target) # type:ignore

123

124 def inhibit(self, target):
125 """Connect to another node through inhibitor edge"""

126 InhibitorEdge.connect(self, target)
127

128

129 class Place(Node):
130 def __init__(self, label, in_edges: list[Edge],
131 out_edges: list[Edge | ReadEdge | InhibitorEdge],
132 tokens=-1, substate: bool = False, show_label: bool = True):
133 super().__init__(label, in_edges, out_edges)
134 self._tokens = tokens
135 self._substate = substate
136 self._show_label = show_label
137

138 def shape(self) -> str:
139 """Return the shape of the place."""
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140 return "egg" if self._show_label else "circle" # type:ignore

141

142 def canFire(self) -> bool:
143 """Check if the place can be triggered."""

144 return self._tokens >= 1
145

146 def active(self) -> bool:
147 """Check if the place is active."""

148 return self._tokens >= 0
149

150 def setTrue(self) -> None:
151 """Set the place to have a token."""

152 self._tokens = 1
153

154 def setFalse(self) -> None:
155 """Set the place to not have a token."""

156 self._tokens = 0
157

158 def setUnknown(self) -> None:
159 """Set the place to have an unknown number of tokens."""

160 self._tokens = -1
161

162 def color(self) -> str:
163 """Return the color of the place."""

164 if self._tokens <= -1:
165 return "grey"
166 elif self._tokens == 0:
167 return "white"
168 else:
169 return "green"
170

171 def label(self):
172 """For visual clarity, format the label to be within a 30 character

bounding box""",!

173 if not self._show_label:
174 return ""
175 label = self._label
176 if len(label) > 30:
177 label = textwrap.fill(label, 25, break_long_words=False)
178

179 return label
180

181 def fire(self):
182 """BFS traversal to fire outgoing transitions, if possible"""

183 Q = collections.deque([e for e in self._out_edges])
184 while Q:
185 edge = Q.popleft()
186 transition = edge._to_node
187 if transition.canFire():
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188 transition.fire()
189

190 # add next set of edges to Q

191 Q.extend([e for e in transition._out_edges])
192

193

194 class Transition(Node):
195 def __init__(self, label: str, in_edges: list[Edge | ReadEdge | InhibitorEdge],
196 out_edges: list[Edge]):
197 super().__init__(label, in_edges, out_edges)
198 # self.shape = "box"

199

200 def shape(self) -> str:
201 """Return the shape of the transition."""

202 return "rectangle"
203

204 def canFire(self) -> bool:
205 """Check if the transition can be triggered."""

206 return all([e.canFire() for e in self._in_edges]) or self._in_edges == []
207

208 def active(self) -> bool:
209 """Check if the transition is active."""

210 return all([e.active() for e in self._in_edges]) or self._in_edges == []
211

212 def fire(self):
213 if self.canFire():
214 for e in self._out_edges:
215 e._to_node.setTrue()
216

217 for e in self._in_edges:
218 # Only consume tokens if the edge is a edge and not a read or

inhibitor edge,!

219 if e._type() == "connect":
220 e._from_node.setFalse()
221

222

223 class PetriNet:
224 """Class representing a Petri net."""

225

226 def __init__(self):
227 self.places = []
228 self.transitions = []
229

230 def place(self, label: str, show_label=True) -> Place:
231 """Get or create a place in the Petri net with the given label."""

232 if any([p._label == label for p in self.places]):
233 return node_from_list(label, self.places) # type: ignore

234 else:
235 place = Place(label, in_edges=[], out_edges=[], show_label=show_label)
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236 self.places.append(place)
237 return place
238

239 def transition(self, label: str) -> Transition:
240 """Get or create a transition in the Petri net with the given label."""

241 if any([t._label == label for t in self.transitions]):
242 return node_from_list(label, self.transitions) # type: ignore

243 else:
244 tran = Transition(label, in_edges=[], out_edges=[])
245 self.transitions.append(tran)
246 return tran
247

248 @staticmethod
249 def draw_edge(dot, edges_drawn, edge: Edge):
250 """Draw an edge if it hasn't been drawn already and add it to the list of

drawn edges.""",!

251 if edge._hash_id in edges_drawn:
252 return
253 dot.edge(str(edge._from_node._id), str(edge._to_node._id),

arrowhead=edge.arrow_head),!

254 edges_drawn.append(edge._hash_id)
255

256 def assemble(self, engine: str = 'dot'):
257 dot = Digraph(comment='PetriNet')
258 dot.engine = engine
259 dot.graph_attr['overlap'] = 'false'
260 edges_drawn = []
261

262 # Draw places nodes

263 for place in self.places:
264 dot.node(str(place._id),
265 label=place.label(),
266 style="filled",
267 fillcolor=place.color(),
268 shape=place.shape(),
269 fontsize='30', fontname="Arial", fontweight='bold')
270

271 # Draw edges for place

272 for edge in place._in_edges:
273 PetriNet.draw_edge(dot, edges_drawn, edge)
274 for edge in place._out_edges:
275 PetriNet.draw_edge(dot, edges_drawn, edge)
276

277 # Draw transition nodes

278 for transition in self.transitions:
279 # Draw transition nodes, only if they have least one connection

280 if transition._in_edges == [] and transition._out_edges == []:
281 continue
282
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283 dot.node(str(transition._id),
284 label="",
285 style="filled",
286 fillcolor=transition._color,
287 height="1.5",
288 width="0.15",
289 shape=transition.shape())
290

291 # Draw Edges for transition

292 for edge in transition._in_edges:
293 PetriNet.draw_edge(dot, edges_drawn, edge)
294 for edge in transition._out_edges:
295 PetriNet.draw_edge(dot, edges_drawn, edge)
296

297 return dot
298

299 def fire_transitions(self):
300 """Trigger all transitions in Petri Net.

301 Used for initial value evaluation (i.e. unconditional transitions)"""

302 for transition in self.transitions:
303 transition.fire()
304

305 def render(self):
306 """Render the Petri net using Graphviz."""

307 dot = self.assemble()
308 # Make the graph left to right (instead of top to bottom)

309 dot.attr(rankdir='LR')
310 # Reduce the spacing between nodes and edges for visual clarity

311 dot.attr(nodesep='0.15')
312 dot.attr(ranksep='0.3')
313 dot.attr(newrank='true')
314 # Make edges thicker for visual clarity

315 dot.attr(penwidth='2')
316 dot.format = 'png'
317 # Add timestamp to filename to avoid overwriting

318 filename = f"outputs/_{datetime.datetime.now().strftime('%Y%m%d%H%M%S')}"
319 # Render the graph

320 dot.render(filename, view=True, cleanup=True)

Listing 12: Python Implementation of Petri Net for contract representation.
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A.1.2 CoLa Syntax Translation

1 || Type Definitions for intermediate syntax
2 || Types starting with t_... are types from Fattals CoLa implementation
3 || Types starting with m_... are new types
4 m_test ::= TRUE | FALSE
5

6 m_modal_verb ::= M_SHALL | M_SHANT | M_MAY
7

8 m_statement ::= M_TemporalActionStatement(m_test, t_subject, m_modal_verb, t_verb,
t_object, t_date),!

9

10 m_conditional_statement ::= M_ConditionalStatement(m_condition, m_statement)
11

12 m_condition ::= M_StatementCondition(m_statement)
13 | M_TemporalActionCondition(m_test, t_subject, t_verb_status,

t_object, t_date),!

14 | M_ExpressionCondition(m_test, t_subject, t_verb_status,
t_comparison, t_subject),!

15 | M_AndCondition([m_condition])
16 | M_OrCondition([m_condition])
17

18 m_definition ::= M_IsDefinition(t_subject, t_subject)
19 | M_EqualsDefinition(t_object, t_numericalexpr)
20 | M_DefAnd([m_definition])
21

22 m_conditional_definition ::= M_ConditionalDefinition(m_condition, m_definition)
23

24 || Helper Functions to reduce code length
25 || Conditional Statements
26 cond_stmt :: m_condition -> m_statement -> m_conditional_statement
27 cond_stmt cond stmt = M_ConditionalStatement(cond, stmt)
28

29 || Conditional Definitions
30 cond_def :: m_condition -> m_definition -> m_conditional_definition
31 cond_def cond def = M_ConditionalDefinition(cond, def)
32

33 || Translate parsed cola contract into combined syntax
34 m_translate_contract :: maybe t_contract -> ([m_statement],

[m_conditional_statement], [m_definition], [m_conditional_definition]),!

35 m_translate_contract (Nothing) = ([], [], [], [])
36 m_translate_contract (Just (TrueContract)) = ([], [], [], [])
37 m_translate_contract (Just (Contract comp)) = (convert_comonent comp)
38 m_translate_contract (Just (Contracts_and comps)) = combined_components

(map convert_comonent comps) ([], [], [], []),!

39

40 || Combine of contract into one tuple
41 combined_components [] (s, cs, d, cd) = (s, cs, d, cd)

61



University College London

42 combined_components ((s, cs, d, cd):rest) (sa, csa, da, cda) = combined_components
rest ((s++sa), (cs++csa), (d++da), (cd++cda)),!

43

44 || Convert parsed CoLa component into combined syntax
45 convert_comonent :: t_component -> ([m_statement], [m_conditional_statement],

[m_definition], [m_conditional_definition]),!

46 convert_comonent comp
47 = xconvert_component comp
48 where
49 || Pattern matching on the different types of components
50 xconvert_component (CompDefinition t_def) = ([], [],

[(trans_def (t_def))], []),!

51 xconvert_component (CompStatement t_stmt) = ((trans_stmt
(t_stmt)), [], [], []),!

52 xconvert_component (CompCondStatement t_cond t_stmt) = ([],
(trans_cond_stmts t_cond t_stmt) , [], []),!

53 xconvert_component (CompStatStatement t_stmt1 t_stmt2 ) = ([],
(trans_stmt_stmts t_stmt1 t_stmt2), [], []),!

54 xconvert_component (CompExprDefinition t_expr t_def ) = ([], [], [],
[(trans_expr_def t_expr t_def)]),!

55

56 || Convert CoLa unconditional definitions
57 || trans_def :: t_definition -> m_definition
58 trans_def (Definitions_and comps) = M_DefAnd((map trans_def comps))
59 trans_def (Def_IS t_ID sbj1 sbj2) = M_IsDefinition(sbj1, sbj2)
60 trans_def (Def_EQ t_ID obj num_exp) = M_EqualsDefinition(obj, num_exp)
61

62 || Convert CoLa conditional definitions
63 || trans_expr_def :: t_condition -> t_definition -> m_conditional_definition
64 trans_expr_def condExpr defin = xtrans_expr_def (trans_expr_cond condExpr)

(trans_def defin),!

65 xtrans_expr_def prsedExpr defin = M_ConditionalDefinition(prsedExpr, defin)
66

67 || Convert CoLa expression conditions
68 || trans_expr_cond :: t_condition -> m_condition
69 trans_expr_cond (Expressions_or exprs) = M_OrCondition( (map trans_expr_cond

exprs)),!

70 trans_expr_cond (Expressions_and exprs) = M_AndCondition( (map trans_expr_cond
exprs)),!

71 trans_expr_cond (Expression tId Holds sbj1 vrb_sts comp sbj2) =
M_ExpressionCondition(TRUE, sbj1, vrb_sts, comp, sbj2),!

72 trans_expr_cond (Expression tId NotHolds sbj1 vrb_sts comp sbj2) =
M_ExpressionCondition(FALSE, sbj1, vrb_sts, comp, sbj2),!

73

74 || Convert CoLa conditional statements
75 || trans_stmt_stmts :: t_statement -> t_statement -> [m_conditional_statement]
76 trans_stmt_stmts stmt_cond stmt = xtrans_stmt_stmts (trans_stmt_cond stmt_cond)

(trans_stmt stmt),!

77 xtrans_stmt_stmts prsed_cond stmtlist = (map (cond_stmt prsed_cond) stmtlist)
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78

79 || Convert CoLa statement conditions
80 || trans_stmt_cond :: t_condition -> m_condition
81 trans_stmt_cond (Statements_and stmts) = M_AndCondition((map

trans_stmt_cond stmts)),!

82 trans_stmt_cond (Statements_or stmts) = M_OrCondition((map trans_stmt_cond
stmts)),!

83 trans_stmt_cond (Statement tId Holds stmtType date sbj vrb obj) =
M_StatementCondition(M_TemporalActionStatement(TRUE, sbj, (deontic_to_verb
stmtType), vrb, obj, date))

,!

,!

84 trans_stmt_cond (Statement tId NotHolds stmtType date sbj vrb obj) =
M_StatementCondition(M_TemporalActionStatement(FALSE, sbj,(deontic_to_verb
stmtType), vrb, obj, date))

,!

,!

85

86 || CoLa CoLa conditional statements
87 || trans_cond_stmts :: t_condition -> t_statement -> [m_conditional_statement]
88 trans_cond_stmts cond stmt = xtrans_cond_stmts (trans_conds cond) (trans_stmt

stmt),!

89 xtrans_cond_stmts prsed_cond stmtlist = (map (cond_stmt prsed_cond) stmtlist)
90

91 || Convert cola conditions
92 || trans_conds :: t_condition -> m_condition
93 trans_conds (Conditions_or conds) = M_OrCondition((map trans_conds

conds)),!

94 trans_conds (Conditions_and conds) = M_AndCondition((map trans_conds
conds)),!

95 trans_conds (Condition tId Holds date subj vrb_sts obj) =
M_TemporalActionCondition(TRUE, subj, vrb_sts, obj, date),!

96 trans_conds (Condition tId NotHolds date subj vrb_sts obj) =
M_TemporalActionCondition(FALSE, subj, vrb_sts, obj, date),!

97

98 || Convert cola statements
99 || trans_stmt :: t_statement -> [m_statement]

100 trans_stmt (Statements_and stmts) = (concat (map trans_stmt stmts))
101 trans_stmt (Statements_or stmts) = (concat (map trans_stmt stmts))
102 trans_stmt (Statement tId Holds stmtType date sbj vrb obj) =

[M_TemporalActionStatement(TRUE, sbj, (deontic_to_verb stmtType), vrb, obj,
date)]

,!

,!

103 trans_stmt (Statement tId NotHolds stmtType date sbj vrb obj) =
[M_TemporalActionStatement(FALSE, sbj, (deontic_to_verb stmtType), vrb, obj,
date)]

,!

,!

104

105 || Convert deontic type to modal verb
106 || deontic_to_verb :: t_statement_type -> m_denotic_verbs
107 deontic_to_verb Obligation = M_SHALL
108 deontic_to_verb Permission = M_MAY
109 deontic_to_verb Prohibition = M_SHANT
110

111
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112 abstype m_contract
113 with
114 translate_contract :: maybe t_contract -> m_contract
115 showm_contract :: m_contract -> [char]
116

117 m_contract_type ::= M_Contract ([m_statement], [m_conditional_statement],
[m_definition], [m_conditional_definition]),!

118 m_contract == m_contract_type
119

120 || Translate parsed cola contract into combined syntax
121 translate_contract parsed_cola_contract = M_Contract (m_translate_contract

parsed_cola_contract),!

122 || Show combined syntax contract
123 cola_to_python con = translate_contract (parse con)
124

125 showm_contract (M_Contract (stmts, cond_stmts, defin, cond_defins))
126 = "con = Contract()\n\n"
127 ++ (lay (map (print_stmt_call.print_statement) stmts))
128 ++ (lay (map (print_stmt_call.print_condition_stmt) cond_stmts))
129 ++ (lay (map (print_def_call.print_definition) defin))
130 ++ (lay (map (print_def_call.print_conditionitional_definition)

cond_defins)),!

131 ++ "con.interaciveSimulation()"
132

133 print_stmt_call :: [char] -> [char]
134 print_stmt_call stmt = "con.statement(" ++ stmt ++ ")\n"
135 print_def_call def = "con.definition(" ++ def ++ ")\n"
136 print_temporal_expression :: t_date -> [char]
137 print_temporal_expression date = "TemporalExpression('ON','" ++ (show date) ++ "')"
138

139 print_test TRUE = "True"
140 print_test FALSE = "False"
141

142 print_modal_verb M_SHALL = "SHALL"
143 print_modal_verb M_SHANT = "SHANT"
144 print_modal_verb M_MAY = "MAY"
145

146 print_statement (M_TemporalActionStatement(m_test, t_subject, m_modal_verb, t_verb,
t_object, date)),!

147 = "TemporalStatement('" ++ (show t_subject) ++ "', '" ++ (print_modal_verb
m_modal_verb),!

148 ++ "', '" ++ (show t_verb) ++ "', '" ++ (show t_object) ++ "', " ++
(print_temporal_expression date) ++ ", valid=" ++ (print_test m_test) ++ ")",!

149

150 print_condition_stmt (M_ConditionalStatement(cond, stmt))
151 = "ConditionalStatement(condition=" ++ (print_condition cond) ++ ", statement="

++ (print_statement stmt) ++ ")",!

152
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153 print_condition (M_StatementCondition(M_TemporalActionStatement(m_test, t_subject,
m_modal_verb, t_verb, t_object, date))),!

154 = "StatementCondition(statement=" ++ (print_statement
(M_TemporalActionStatement(m_test, t_subject, m_modal_verb, t_verb, t_object,
date)))

,!

,!

155 ++ ", test=" ++ (print_test m_test) ++ ")"
156

157 print_condition (M_TemporalActionCondition(m_test, t_subject, t_verb_status,
t_object, date)),!

158 = "TemporalActionCondition('" ++ (show t_subject) ++ "', '" ++ (show
t_verb_status) ++ "' , '",!

159 ++ (show t_object) ++ "', " ++ (print_temporal_expression date) ++ ", test="
++ (print_test m_test) ++")",!

160

161 print_condition (M_ExpressionCondition(m_test, sbj1, t_verb_status, t_comparison,
sbj2)),!

162 = "ExpressionCondition(BooleanExpression('" ++ (show sbj1) ++ "', '" ++ (show
t_verb_status),!

163 ++ "', '" ++ (show t_comparison) ++ "', '" ++ (show sbj2) ++ "'), test=" ++
(print_test m_test) ++ ")",!

164

165 print_condition (M_AndCondition(conds))
166 = "AndCondition(conditions=[" ++ (concat (map ((++",\n\t\t").print_condition)

conds)) ++ "])",!

167

168 print_condition (M_OrCondition(conds))
169 = "OrCondition(conditions=[" ++ (concat (map ((++",\n\t\t").print_condition)

conds)) ++ "])",!

170

171

172 print_definition (M_IsDefinition(sbj1, sbj2)) = "IsDefinition('" ++ (show
sbj1) ++ "', '" ++ (show sbj2) ++"')",!

173 print_definition (M_EqualsDefinition(obj, numexp)) = "EqualsDefinition('" ++ (show
obj) ++ "', '" ++ (print_expression numexp) ++"')",!

174 print_definition (M_DefAnd(def)) = "[" ++ (concat (map
((++",\n\t\t").print_definition) def)) ++ "]",!

175

176 print_expression (NumericalExprObject obj) = (show obj)
177 print_expression (NumericalExprNum t_num) = (show t_num)
178 print_expression (NumericalExprExpr exp1 op exp2) = (print_expression exp1) ++ " "

++ (show op) ++ " " ++ (print_expression exp2),!

179 print_expression (NoNumericalExpr) = ""
180

181 print_conditionitional_definition (M_ConditionalDefinition(cond, defs))
182 = "ConditionalDefinition(condition=" ++ (print_condition cond) ++ ",

definitions=" ++ (print_definition defs) ++ ")\n",!

183

184 || Simple Test Contracts
185 || Simple Statement
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186 test1 = "[1] It is the case that Dominic shall deliver a Report on the 11 September
2023.",!

187 || Simple Forbidden Statement
188 test2 = "[1] It is not the case that Dominic shall deliver a Report on the 11

September 2023.",!

189 || Simple Conditional Statement
190 test3 = "IF [1] it is the case that Dominic delivered a Report on the 11 September

2023 THEN [2] it is not the case that Dominic shall deliver a Report on the 11
September 2023."

,!

,!

191 test4 = "IF [1] It is not the case that Dominic delivered a Report on the 11
September 2023 THEN [2] it is the case that UCL may deliver a Punishment on the
11 September 2023 AND [3] it is the case that Dominic shall deliver a Report on
the 12 September 2023."

,!

,!

,!

192 || And Condition
193 test5 = "IF [1] it is the case that PartyA shall pay AmountA on the 11 September

2023 AND [2] it is the case that PartyB shall pay AmountB on the 11 September
2023 THEN [3] it is not the case that PartyA shall pay AmountA on the 11
September 2023."

,!

,!

,!

194 test6 = "IF [1] it is the case that PartyA shall pay AmountA on the 11 September
2023 OR [2] it is the case that PartyB shall pay AmountB on the 11 September
2023 THEN [3] it is not the case that PartyA shall pay AmountA on the 11
September 2023"

,!

,!

,!

195 || Seperate Statements
196 test7 = "[1] It is the case that Dominic shall deliver a Report on the 11 September

2023.",!

197 ++ "<AND> [2] It is not the case that Dominic may deliver a Report on
the 11 September 2023.",!

198

199 || ISDA Contract
200 isda_orig = "IF [1] it is the case that PartyA shall pay AmountA on the 01 January

1970 AND [2] it is the case that PartyB shall pay AmountB on the 01 January
1970 THEN [3] it is not the case that PartyA shall pay AmountA on the 01
January 1970 AND [4] it is not the case that PartyB shall pay AmountB on the 01
January 1970 "

,!

,!

,!

,!

201 ++ "<AND> [5] it is the case that ExcessParty shall pay the excess
amount of currency on the 01 January 1970 ",!

202 ++ "<AND> IF [6] it is the case that PartyA paid more than PartyB
THEN [7] ExcessParty IS PartyA AND [8] the excess amount of currency EQUALS
AmountA MINUS AmountB "

,!

,!

203 ++ "<AND> IF [9] it is the case that PartyB paid more than PartyA
THEN [10] ExcessParty IS PartyB AND [11] the excess amount of currency EQUALS
AmountB MINUS AmountA."

,!

,!

204

205 || Modified ISDA Contract
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206 isda_modified = "IF [1] it is the case that PartyA shall pay AmountA on the 01
January 1970 AND [2] it is the case that PartyB shall pay AmountB on the 01
January 1970 THEN [3] it is not the case that PartyA shall pay AmountA on the
01 January 1970 AND [4] it is not the case that PartyB shall pay AmountB on the
01 January 1970 AND [5] it is the case that ExcessParty shall pay the excess
amount of currency on the 01 January 1970 "

,!

,!

,!

,!

,!

207 ++ "<AND> IF [6] it is the case that PartyA paid more than PartyB
THEN [7] ExcessParty IS PartyA AND [8] the excess amount of currency EQUALS
AmountA MINUS AmountB "

,!

,!

208 ++ "<AND> IF [9] it is the case that PartyB paid more than PartyA
THEN [10] ExcessParty IS PartyB AND [11] the excess amount of currency EQUALS
AmountB MINUS AmountA."

,!

,!

209

210 || Bike Delivery Contract
211 bike_orig = "IF [1a] it is the case that Alice paid 100 pounds on the 1 April 2021

OR [1b] it is the case that Alice paid 120 pounds on the 1 April 2021 THEN [2]
it is the case that Bob must deliver a bicycle on the 5 April 2021"

,!

,!

212 ++ " <AND> [3a] it is the case that Bob may deliver a receipt on the
5 April 2021 AND [3b] it is the case that Bob is forbidden to charge a
delivery_fee on the 5 April 2021."

,!

,!

213

214 || Modified Bike Delivery Contract
215 biked_modified = "IF [1a] it is the case that Alice paid 100 pounds on the 1 April

2021 OR [1b] it is the case that Alice paid 120 pounds on the 1 April 2021 THEN
[2] it is the case that Bob must deliver a bicycle on the 5 April 2021 AND [3a]
it is the case that Bob may deliver a receipt on the 5 April 2021 AND [3b] it
is the case that Bob is forbidden to charge a delivery_fee on the 5 April
2021."

,!

,!

,!

,!

,!

216

217 || Bike Delivery Contract with Sanction
218 bike_sanction = "IF [1a] it is the case that Alice paid 100 pounds on the 1 April

2021 OR [1b] it is the case that Alice paid 120 pounds on the 1 April 2021 THEN
[2] it is the case that Bob must deliver a bicycle on the 5 April 2021 AND [3a]
it is the case that Bob is forbidden to charge a delivery_fee on the 5 April
2021 "

,!

,!

,!

,!

219 ++ "<AND> IF [6] it is the case that Bob delivered a bicycle on
the 5 April 2021 AND [7] it is not the case that Bob charged a delivery_fee on
the 5 April 2021 THEN [8] it is the case that Bob may deliver a receipt on the
5 April 2021 "

,!

,!

,!

220 ++ "<AND> [4] It is the case that Alice may charge 120 pounds on
the 1 April 2021 IF [5] it is not the case that Bob delivered a bicycle on the
5 April 2021."

,!

,!

221

222 || Guarantor Agreement Contract
223 guarantor = "[1] It is the case that Landlord shall deliver a Property on the 02

April 2021 ",!
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224 ++ "<AND> IF [2] it is the case that Landlord delivered a
demandOfTenantPayment on the 02 March 2021 AND [3] it is not the case that
Tenant paid AmountA on the 2 March 2021 THEN [4] it is the case that the
Landlord may deliver a demandOfGuarantorPayment on the 03 March 2021 "

,!

,!

,!

225 ++ "<AND> IF [3] it is the case that Landlord delivered a
demandOfTenantPayment on the 02 March 2021 AND [4] it is not the case that
Tenant paid AmountA on the 2 March 2021 AND [5] it is the case that Landlord
delivered a demandOfGuarantorPayment on the 03 March 2021 THEN [6] it is the
case that Guarantor shall pay AmountA on the 03 March 2021 "

,!

,!

,!

,!

226 ++ "<AND> IF [7] it is not the case that Tenant paid AmountB on the 10
March 2022 THEN [8] it is the case that the Guarantor shall pay AmountB on the
11 March 2023 "

,!

,!

227 ++ "<AND> IF [9] it is the case that HousingBenefitScheme paid AmountC
on the 02 March 2021 AND [10] it is the case that LocalAuthority delivered a
overpaymentClaim on the 02 March 2022 THEN [11] it is the case that Guarantor
shall pay AmountC on the 01 January 1970."

,!

,!

,!

228

229 python_test1 = cola_to_python test1
230 python_test2 = cola_to_python test2
231 python_test3 = cola_to_python test3
232 python_test4 = cola_to_python test4
233 python_test5 = cola_to_python test5
234 python_test6 = cola_to_python test6
235 python_test7 = cola_to_python test7
236 python_isda_orig = cola_to_python isda_orig
237 python_isda_modified = cola_to_python isda_modified
238 python_bike_orig = cola_to_python bike_orig
239 python_bike_modified = cola_to_python biked_modified
240 python_bike_sanction = cola_to_python bike_sanction
241 python_guarantor = cola_to_python guarantor

Listing 13: Miranda Code for CoLa contract translation.
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A.1.3 Lexon Compiler

1 // ./src/main.rs

2 fn main() {
3 let args: Vec<String> = std::env::args().collect();
4 let unparsed_file = std::fs::read_to_string(&args[1]).expect("cannot read

file");,!

5 match ast::parse(unparsed_file){
6 Ok(lexons)=>{
7 let vm=vm::LexonVM::new(lexons);
8 println!("\nResulting Ethereum Solidity code:\n");
9 let sol=vm.solidity();

10 println!("{}",sol);
11 check_sol(sol);
12 println!("\nResulting Aeternity Sophia code:\n");
13 let sop=vm.sophia();
14 println!("{}",sop);
15 check_sop(sop);
16 // =====================================================

17 // Modification by Dominic Kloecker

18 // Write the JSON AST to a file

19 let json = vm.get_json();
20 println!("{}", json);
21 let directory = "./json_ast";
22 let filename = format!("{}/{}.txt", directory,

"contract_ast");,!

23 // Create the directory if it does not exist

24 if !Path::new(directory).exists() {
25 fs::create_dir_all(directory).expect("Failed to

create directory");,!

26 }
27 // Write the fromatted_content to the file

28 let fromatted_content = format!("{}{}", json, "\n");
29 fs::write(filename, &fromatted_content).expect("Unable to

write to file");,!

30 // =====================================================

31 },
32 Err(error)=>{
33 println!("error: {:?}",error);
34 }
35 };
36 }

Listing 14: Rust code of modified Lexon compiler [4], outputting Lexons AST in JSON
format using inbuilt Lexon get_json() method.
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A.1.4 Lexon Syntax Translator

1 import json
2 from pprint import pprint
3 from typing import List, Dict, Tuple, Optional
4

5 from Condition import Condition, StateCondition, AndCondition, ExpressionCondition
6 from Contract import Contract
7 from Definition import IsDefinition, EqualsDefinition, ConditionalDefinition
8 from Expression import NumericExpression
9 from State import State

10 from Statement import Statement, TwoSubjects, ConditionalStatement
11

12

13 def make_groups(lexons: List[Dict]):
14 """Splot lexon list into groups to keep track of subject.

15 Statmenets split by AND are done by the same subject while seqeunce indicates

16 a new subject."""

17 groups = []
18 group = []
19 for lexon in lexons:
20 match lexon["stmt"]:
21 case "Sequence":
22 groups.append(group)
23 group = []
24 case {"And": _}:
25 pass
26 case _:
27 group.append(lexon)
28

29 groups.append(group)
30 return groups
31

32 def convert_conditions(condition: Dict) -> Tuple[Condition, Condition]:
33 """convert the conditions and return the true and false conditions."""

34 condition_operators = condition["ops"]
35 expressions = condition["exprs"]
36

37 current_expression = expressions.pop(0)
38 if "Cmp" in current_expression:
39 result, test = convert_comparison(current_expression["Cmp"]), True
40 else:
41 result, test = convert_is_expression(current_expression["Is"])
42

43 true_condition = ExpressionCondition(result, test=test)
44 false_condition = ExpressionCondition(result, test=test)
45

46 if not condition_operators:
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47 return true_condition, false_condition
48

49 if condition_operators[0] == "And":
50 true_conditions = [true_condition]
51 false_conditions = [false_condition]
52

53 while expressions:
54 expr = expressions.pop(0)
55

56 if "Cmp" in expr:
57 result, test = convert_comparison(expr["Cmp"]), True
58 else:
59 result, test = convert_is_expression(expr["Is"])
60

61 true_conditions.append(ExpressionCondition(result, test=test))
62 false_conditions.append(ExpressionCondition(result, test=test))
63

64 return AndCondition(true_conditions), AndCondition(false_conditions) #

type: ignore,!

65

66 return true_condition, false_condition
67

68

69 def convert_is_expression(is_expr: Dict) -> tuple[NumericExpression, bool]:
70 """convert 'is' expression and return a numeric expression."""

71 first_operand = is_expr[0]
72 operator = is_expr[1]
73 test = True
74 if operator == "isnot":
75 test = False
76 operator = "is"
77

78 second_operand = convert_expression(is_expr[2])
79

80 return NumericExpression(first_operand, operator, second_operand), test
81

82

83 def convert_comparison(comparison: Dict) -> NumericExpression:
84 """convert comparison and return a numeric expression."""

85 operator = comparison["op"]
86 first_operand = convert_expression(comparison["exp1"])
87 second_operand = convert_expression(comparison["exp2"])
88

89 return NumericExpression(first_operand, operator, second_operand)
90

91

92 def convert_expression(expr: Dict) -> str:
93 """convert general expression and return its string representation."""

94 operators = expr["ops"]

71



University College London

95 result = convert_terms(expr["terms"].pop(0))
96

97 for op in operators:
98 result = f"{result} {op} {convert_terms(expr['terms'].pop(0))}"
99

100 return result
101

102

103 def convert_terms(term: Dict) -> str:
104 """convert terms and return its string representation."""

105 factors = term["factors"]
106 return convert_factors(factors.pop(0))
107

108

109 def convert_factors(factors: Dict) -> str:
110 """convert factors and return its string representation."""

111 if not factors:
112 return ""
113

114 if "Sym" in factors:
115 return factors["Sym"]["sym"]
116 if "sym" in factors:
117 return factors["sym"]
118 if "Num" in factors:
119 return ""
120

121 # For other types of factors

122 key, value = list(factors.items())[0]
123 if key == "Time":
124 return f"{value}"
125 if key == "Remainder":
126 return f"{value} {key}"
127

128 return f"{value} {key}"
129

130

131 def convert_payment_statement(pay_stmt: Dict) -> Tuple[str, str, str]:
132 """convert payment statement and return pay-to, pay-from, and amount

details.""",!

133 pay_from = convert_factors(pay_stmt["from"]) if pay_stmt["from"] else ""
134 amount_expression = pay_stmt["exp"]
135 pay_to = convert_factors(pay_stmt["to"]) if pay_stmt["to"] else "the other

party",!

136

137 amount = convert_expression(amount_expression)
138

139 return pay_to, pay_from, amount
140

141
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142 def convert_return_statement(ret_stmt: Dict) -> Tuple[str, str]:
143 """convert payment statement and return pay-to, pay-from, and amount

details.""",!

144 terms = ret_stmt[0][0]["terms"]
145 return_what = convert_factors(terms[0]["factors"].pop(0))
146

147 return_to = ret_stmt[1]["sym"] if ret_stmt[1] else "the other party"
148

149 return return_what, return_to
150

151

152 def convert_operation(operations: Dict) -> str:
153 """convert operations and return its string representation."""

154 terms = operations[1]["terms"]
155 factor_operators = operations[1]["ops"]
156 factors = terms[0]["factors"]
157

158 result = convert_factors(factors.pop(0))
159 object = operations[0]
160

161 while factor_operators:
162 op = factor_operators.pop(0)
163 result = f"{result} {op} {convert_factors(factors.pop(0))}"
164

165 return f"{result}"
166

167

168 def convert_lexon_group(lexons: List[Dict], con: Contract,
169 pre_condition: Optional[Condition] = None, prev_subject="",
170 modal_verb="Shall", overall_condition: Optional[Condition] =

None,,!

171 fullfillment_conditions: Optional[Condition] = None) -> None:
172 prev_subject = prev_subject
173 pre_condition = pre_condition
174

175 if fullfillment_conditions == None:
176 fullfillment_conditions = []
177

178 while lexons:
179 # Pop the next lexon from the list and unpack it

180 lexon = lexons.pop(0)
181 stmt = lexon["stmt"]
182 varname = lexon["varnames"]
183

184 # Reset the statement and definition

185 statement = None
186 definition = None
187

188 # Pattern match the statement and convert it to appropriate element
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189 match stmt:
190 case "Sequence":
191 continue
192

193 case "And":
194 continue
195

196 case {"Definition": _}:
197 continue
198

199 case {"Increase": _}:
200 if prev_subject != "":
201 subject = prev_subject
202 else:
203 subject = varname[0]
204

205 operation = convert_operation(stmt["Increase"])
206 subject2 = stmt["Increase"][0]
207 statement = TwoSubjects(subject, modal_verb, "Increase", subject2,

"by", operation),!

208

209 case {"Decrease": _}:
210 if prev_subject != "":
211 subject = prev_subject
212 else:
213 subject = varname[0]
214

215 subject2 = stmt["Decrease"][0]
216 operation = convert_operation(stmt["Decrease"])
217 statement = TwoSubjects(subject, modal_verb, "Decrease", subject2,

"by", operation),!

218

219 case {"Pay": _}:
220 if prev_subject != "":
221 subject = prev_subject
222 else:
223 subject = stmt["Pay"]["who"]["sym"]
224 prev_subject = subject
225

226 pay_to, pay_from, what = convert_payment_statement(stmt["Pay"])
227 if pay_from != "" or None:
228 statement = TwoSubjects(subject, modal_verb, "Pay", what,

"from" + pay_from + " to", pay_to),!

229 else:
230 statement = TwoSubjects(subject, modal_verb, "Pay", what, "to",

pay_to),!

231

232 case {"Return": _}:
233 if prev_subject != "":
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234 subject = prev_subject
235 else:
236 subject = varname[0]
237 prev_subject = subject
238

239 return_what, return_to = convert_return_statement(stmt["Return"])
240 statement = TwoSubjects(subject, modal_verb, "Return", return_what,

"to", return_to),!

241

242 case {"Certify": _}:
243 if prev_subject != "":
244 subject = prev_subject
245 else:
246 subject = varname[0]
247 prev_subject = subject
248

249 # Combine all the strings in the list (Might be nested lists so

flatten it first),!

250 # and then join them with a space

251 object = " ".join([item for sublist in stmt["Certify"] for item in
sublist]),!

252 # object = stmt["Certify"]

253 statement = Statement(subject, modal_verb, "certify", object)
254

255 case {"Fix": _}:
256 if prev_subject != "":
257 subject1 = prev_subject
258 object = varname[-1]
259 else:
260 subject1 = varname[0]
261 object = varname[-1]
262 prev_subject = subject1
263

264 statement = Statement(subject1, modal_verb, "Fix", object)
265

266 case "Appoint":
267 if prev_subject != "":
268 subject1 = prev_subject
269 object = varname[0]
270 else:
271 subject1 = varname[0]
272 object = varname[1]
273 prev_subject = subject1
274

275 statement = Statement(subject1, modal_verb, "Appoint", object)
276

277 case {"Be": _}:
278 subject = varname[0]
279
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280 if stmt["Be"]["expression"]:
281 expressions = stmt["Be"]["expression"]
282 expression_string = convert_expression(expressions)
283

284 object = expression_string
285 definition = EqualsDefinition(subject, object)
286 else:
287 expressions = stmt["Be"]["def"]
288 definition = IsDefinition(subject, expressions)
289

290 case {"If": _}:
291 conditions = stmt["If"]
292 condition_expressions = conditions["cond"]
293

294 on_true_cond, on_false_cond =
convert_conditions(condition_expressions),!

295

296 # Recursive call to convert nested statements

297 if pre_condition is not None:
298 on_true_comb = AndCondition.combined([on_true_cond,

pre_condition]),!

299 on_false_comb = AndCondition.combined([on_false_cond,
pre_condition]),!

300 else:
301 on_true_comb = on_true_cond
302 on_false_comb = on_false_cond
303

304 on_true = stmt["If"]["ontrue"]
305 convert_lexon_group(lexons=on_true, con=con,

pre_condition=on_true_comb, modal_verb=modal_verb,,!

306 prev_subject=prev_subject,
overall_condition=overall_condition),!

307 on_false = stmt["If"]["onfalse"]
308 # Recursive call to convert nested statements

309 convert_lexon_group(lexons=on_false, con=con,
pre_condition=on_false_comb, modal_verb=modal_verb,,!

310 prev_subject=prev_subject,
overall_condition=overall_condition),!

311

312 case {"May": _}:
313 subject = stmt["May"][0]
314 nested_statemtents = stmt["May"][1]
315 # Recursive call to convert nested statements

316 convert_lexon_group(nested_statemtents, con,
pre_condition=pre_condition, prev_subject=subject,,!

317 modal_verb="May",
overall_condition=overall_condition),!

318

319 # General Catch all
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320 case _:
321 pass
322

323 condition = None
324 if pre_condition and overall_condition:
325 condition = AndCondition.combined([pre_condition, overall_condition])
326 elif overall_condition:
327 condition = overall_condition
328

329 if statement:
330 if condition:
331 statement = ConditionalStatement(condition, statement)
332 pre_condition = statement.statement().fulfillmentCondition()
333 fullfillment_conditions.append(pre_condition)
334 else:
335 pre_condition = statement.fulfillmentCondition()
336 fullfillment_conditions.append(pre_condition)
337

338 con.statement(statement)
339

340 elif definition:
341 if condition:
342 definition = ConditionalDefinition(condition, [definition])
343

344 con.definition(definition)
345

346 modal_verb = "Shall"
347

348

349 def convert_all_lexon_groups(lexon_groups: List[List[Dict]], contract: Contract,
350 prev_condition: Optional[Condition] = None,

overall_condition: Optional[Condition] = None,,!

351 fullfillment_conditions: List[Condition] = []):
352 """convert all the lexon groups."""

353 for lexon_group in lexon_groups:
354 convert_lexon_group(lexon_group, contract, prev_condition,

overall_condition=overall_condition,,!

355 fullfillment_conditions=fullfillment_conditions)
356

357

358 class LexonTranslator:
359 def __init__(self, filename) -> None:
360 self._filename = filename
361 self._json = {}
362 # self._contract = Con

363

364 def read_json_from_file(self) -> None:
365 with open(self._filename, "r") as f:
366 self._json = json.load(f)[0]
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367

368 def pprint_json(self):
369 """"Pretty print the JSON"""

370 pprint(self._json)
371

372 def _terms_stmts(self):
373 """Return the Statement JSONS"""

374 return self._json["term_stmts"].copy()
375

376 def _term_clasuses(self):
377 """Return the Clauses JSONS"""

378 return self._json["term_chpts"].copy()
379

380 def _get_recitals(self) -> list[dict]:
381 """Return all recitals"""

382 return self._terms_stmts()
383

384 def _get_clauses(self) -> list[dict]:
385 """Return all clauses"""

386 return self._term_clasuses()
387

388 def _convert(self) -> None:
389 """Convert the Contract JSON into equivalent Petri Net"""

390 # # Get Recitals

391 recitals = self._get_recitals()
392

393 state = State(label="Contract Active", condition=None)
394 state_cond = StateCondition(state=state)
395

396 groups = make_groups(recitals)
397 con = Contract()
398 con.state(state)
399 recital_fullfillment = []
400 test = convert_all_lexon_groups(groups, con, overall_condition=state_cond,
401 fullfillment_conditions=recital_fullfillment)
402 # recitals_met = AndCondition.combined(recital_fullfillment)

403 if recital_fullfillment:
404 recitals_met = AndCondition(recital_fullfillment)
405 recitals_state = State(label="Recitals Met", condition=recitals_met)
406 con.state(recitals_state)
407 else:
408 recitals_state = State(label="Recitals Met", condition=state_cond)
409 con.state(recitals_state)
410

411 recital_cond = StateCondition(state=recitals_state)
412

413 clauses = self._get_clauses()
414 for clause in clauses:
415 name = clause["name"]
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416 clause_state = State(label="Clause Invoked: " + name, condition=None)
417 clause_state_cond = StateCondition(state=clause_state)
418 clause_stmts = clause["statements"]
419 clause_groups = make_groups(clause_stmts)
420 combined_condition = AndCondition.combined([recital_cond,

clause_state_cond]),!

421 convert_all_lexon_groups(clause_groups, con,
overall_condition=combined_condition),!

422 con.state(clause_state)
423

424 con.interaciveSimulation()
425

426 def _simulate_contract(self):
427 """Simulate Contract"""

428 self.read_json_from_file()
429 self._convert()

Listing 15: Python implementation of Lexon contract translation.

A.1.5 Contract Model

Due to space limitations, the Python code of the contract model is not included in the
report. The code, along with all other code used for this project, is available in the
following GitHub repository GitHub.
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A.2 Functionality Tests

This section contains contract conversion and simulation test results for a variety of
contracts written in Lexon and CoLa. Performance simulations contain snapshots of the
contractual state after a set of events. Due to space limitations, only snapshots of some
simulations have been included.
Although every effort has been made to make Petri Nets as visible as possible, it is
suggested to read the simulations on a digital device which allows for zooming in.

A.2.1 CoLa Contracts

A.2.1.1 ISDA Master Agreement

Original ISDA master agreement from Listing 3.

Figure A.1: Screenshot of tabular summary: ISDA master agreement (Listing 3)
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Figure A.2: Performance Simulation snapshots of ISDA master agreement, given illogical
scenario stating that PartyB paid more than partyA and PartyA paid more than PartyB
([(C5, True), (C3, True)])
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A.2.1.2 Modified ISDA Master Agreement

Figure A.3: Screenshot of tabular summary: Modified ISDA master agreement (Lisiting
8).
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Figure A.4: Performance Simulation snapshots of modified ISDA Master Agreement
showing voidance of obligations. Scenario [(C4, True), (C2, True)]

83



University College London

Figure A.5: Continuation of modified ISDA master agreement simulation in Figure A.4,
showing completed performance of the contract. Scenario [(C4, True), (C2, True), (C3,
False), (C5, True), (C1, False), (C1, True)]
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A.2.1.3 Bike Delivery

Simple delivery agreement from Listing 9

Figure A.6: Screenshot of tabular summary: Bike delivery agreement (Listing 9)
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Figure A.7: Performance Simulation of bike delivery agreement, with no payment occur-
ring. Scenario [(C1, False), (C2, False)]
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Figure A.8: Performance Simulation of bike delivery agreement, payment occurring and
bike delivered. Scenario [(C1, False), (C2, True), (C4, True)]
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A.2.1.4 Bike Delivery with Sanction

1 IF [1a] it is the case that Alice paid 100 pounds on the 1 April 2021
2 OR
3 [1b] it is the case that Alice paid 120 pounds on the 1 April 2021
4 THEN[2] it is the case that Bob must deliver a bicycle on the 5 April 2021
5 AND
6 [3a] it is the case that Bob may deliver a receipt on the 5 April 2021
7 AND
8 [3b] it is the case that Bob is forbidden to charge a delivery_fee on the 5

April 2021 ",!

9 C-AND
10 [4] It is the case that Alice may charge 120 pounds on the 1 April 2021
11 IF [5] it is not the case that Bob delivered a bicycle on the 5 April 2021.

Listing 16: CoLa contract of bike delivery with sanction.

Figure A.9: Screenshot of tabular summary: Bike delivery with sanction
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Figure A.10: Performance simulation of bike delivery with sanctions, no payment occur-
ring. Scenario [(C2, False), (C3, False)]
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Figure A.11: Performance simulation of bike delivery with sanctions, bike not delivered
after payment is made. Scenario [(C2, False), (C3, True), (C5, False), (C1, True)]
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Figure A.12: Performance simulation of bike delivery with sanctions, bike delivered.
Scenario [(C2, True), (C5, True), (C6, True)]
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A.2.2 Lexon Contracts

A.2.2.1 Simple Escrow Agreement

1 LEX Paid Escrow.
2 LEXON: 0.2.20
3 COMMENT: 3.f - an escrow that is controlled by a third party for a fee.
4

5 "Payer" is a person.
6 "Payee" is a person.
7 "Arbiter" is a person.
8 "Fee" is an amount.
9

10 The Payer pays an Amount into escrow ,
11 appoints the Payee ,
12 appoints the Arbiter ,
13 appoints the Broker,
14 and also fixes the Fee .
15

16 CLAUSE: Pay Out.
17 The Payer may pay the escrow to the Payee.
18 The Arbiter may pay from escrow the Fee to themselves,
19 and afterwards pay the remainder of the escrow to the Payee.
20

21 CLAUSE: Pay Back.
22 The Payee may pay the escrow to the Payer.
23 The Arbiter may pay from escrow the Fee to themselves,
24 and afterwards return the remainder of the escrow to the Payer.
25

Listing 17: Lexon contract, Escrow controlled by a third party [5]
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Figure A.13: Screenshot of tabular summary: Simple escrow agreement (Listing 17)
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Figure A.14: Performance simulation of simple escrow agreement. Scenario [(C6, True),
(C11, True), (C9, True), (C8, True)]
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Figure A.15: Performance simulation of simple escrow agreement, Recitals met and Pay
Back clause invoked. Scenario [(C6, True), (C11, True), (C9, True), (C8, True), (C10,
True), (C4, True), (C2, True), (C3, True)]
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Figure A.16: Performance simulation of simple escrow agreement, Recitals met and Pay
Out clause invoked. Scenario [(C6, True), (C11, True), (C9, True), (C8, True), (C10,
True), (C5, True), (C12, True)]
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A.2.2.2 Returnable Bet

1 LEX Returnable Bet.
2 LEXON: 0.2.12
3 COMMENT: 6.c - a bet between two parties, with odds
4 TERMS:
5 "Placer" is a person.
6 "Holder" is a person.
7 "Judge" is a person.
8 "Closed" is a binary.
9 "Bet" is this contract.

10 The Judge is appointed.
11

12 CLAUSE: Place Bet.
13 If the Bet is not Closed then
14 the Placer may pay an Amount into escrow,
15 and also fix the Odds.
16

17 CLAUSE: Hold Bet.
18 If the Amount is equal to the escrow times the Odds then
19 the Holder may pay the Amount into escrow,
20 and then the Bet is deemed Closed.
21

22 CLAUSE: Payout.
23 The Judge may If the Bet is Closed then pay the escrow to the Placer.
24 The Judge may If the Bet is Closed then pay the escrow to the Holder.
25 In any case, afterwards the Bet is terminated.
26

27 CLAUSE: Return.
28 The Judge may
29 if the Bet is not Closed then
30 return the escrow to the Placer.

Listing 18: Lexon contract, returnable bet between two parties with odds [3].
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Figure A.17: Screenshot of tabular summary: Returnable Bet between two parties (List-
ing 18).
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Figure A.18: Performance simulation of returnable bet. Scenario [(C7, True), (C5, True),
(C2, False), (C13, True), (C12, True), (C6, True), (C11, True)]
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A.2.2.3 UCC Financing Statement

1 LEX UCC Financing Statement.
2 LEXON: 0.2.12
3

4 "Financing Statement" is this contract.
5 "File Number" is data.
6 "Initial Statement Date" is a time.
7 "Filer" is a person.
8 "Debtor" is a person.
9 "Secured Party" is a person.

10 "Filing Office" is a person.
11 "Collateral" is data.
12 "Digital Asset Collateral" is an amount.
13 "Reminder Fee" is an amount.
14 "Continuation Window Start" is a time.
15 "Continuation Statement Date" is a time.
16 "Continuation Statement Filing Number" is data.
17 "Lapse Date" is a time.
18 "Default" is a binary.
19 "Continuation Statement" is a binary.
20 "Termination Statement" is a binary.
21 "Termination StatementTime" is a time.
22 "Notification Statement" is a text.
23 "Default" is a binary.
24

25 The Filer fixes the Filing Office,
26 fixes the Debtor,
27 fixes the Secured Party,
28 and fixes the Collateral.
29

30 Clause: Certify.
31 The Filing Office may certify the File Number.
32

33 Clause: Set File Date.
34 The Filing Office may fix the Initial Statement Date as the current time.
35

36 Clause: Set Lapse.
37 The Filing Office may fix the Lapse Date as now.
38

39 Clause: Pay Escrow In.
40 The Debtor may pay the Digital Asset Collateral into escrow.
41

42 Clause: Fail to Pay.
43 The Secured Party may fix Default as true.
44

45 Clause: Take Possession.
46 If Default is true then the Filing Office may pay the Digital Asset Collateral to

the Secured Party.,!
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47

48 Clause: File Continuation.
49 The Secured Party may fix the Continuation Statement as true.
50

51 Clause: Set Continuation Lapse.
52 If the Continuation Statement is true then the Filing Office may fix the

Continuation Statement Date.,!

53

54 Clause: File Termination.
55 The Secured Party may fix Termination Statement as true,
56 and fix the Termination StatementTime as the current time.
57

58 Clause: Release Escrow.
59 If the Termination Statement is true then The Filing Office may pay the Digital

Asset Collateral to the Debtor.,!

60

61 Clause: Release ReminderFee.
62 If the Termination Statement is true then The Filing Office may pay the Reminder

Fee to the Secured Party.,!

Listing 19: Lexon Contract, UCC Financing Statement [3].
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Figure A.19: Screenshot of tabular summary: UCC Financing Statement (Listing 19).
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Figure A.20: Performance simulation, UCC Financing Statement with no events.

103



University College London

Figure A.21: Performance simulation, UCC Financing Statement. Scenario [(13, True),
C18, True), (C17, True)]
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Figure A.22: Performance simulation, UCC Financing Statement. Scenario [(13, True),
C18, True), (C17, True), (C16, True), (C1, True), (C28, True)]
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B | User Guide

B.1 CoLa Contracts

To convert a CoLa contract into the Petri Net and start the performance simulation, the
following steps should be taken.

1. Install Miranda on your local machine.
2. Download the CoLa file, available in the project GitHub repository GitHub.
3. Run the following command against any valid CoLa contract ’cola_to_python ...’
4. This will generate the Python Code to generate the Petri Net and simulate the

contract. An example of this can be seen in Figure B.1.
5. Copy the generated Python code and paste it into the ’./Contract Model/-

Cola_tests.py’ file, as shown in Figure B.2, and run the programme.

Figure B.1: To generate the Python code for Petri Net generation, run ’cola_to_python’
function against any valid CoLa contract. This will result in the Python code represen-
tative of the contract.
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Figure B.2: Upon pasting of the Python Code generated by the Lexon syntax translation
into the ’Cola_tests.py’ file, generate the Petri Net by running the programme.

B.2 Lexon Contracts

To convert a Lexon contract into the Petri Net and start the performance simulation,
the following steps should be taken.

1. Locally install the Lexon Compiler from the official Lexon GitLab.
2. Make the modifications shown in Listing 14 to the Lexon code in the ’./src/main.rs’

file.
3. Once these changes are made, follow the guidelines in the Lexon README.md file

to compile a Lexon contract.
4. Once a contract is compiled, its AST in JSON format will be generated inside the

Lexon directory in a ’./json_ast/contract_ast.txt’ file as shown in Figure B.3.
5. Copy the generated file into the Python directory of the contract model in the

’./lexon_contracts’ directory.
6. Read and process the AST using the LexonTranslator class as shown in Figure B.4.
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Figure B.3: Generated Lexon AST file

Figure B.4: Paste the AST file generated by the compiler into ’.Contract Mod-
el/lexon_contracts’ directory. You can then generate the Petri Net and run the sim-
ulation by referencing the text file similarly to the examples shown in this image.
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